1,038 research outputs found

    Analytical representations of unified equations of state of neutron-star matter

    Full text link
    Analytical representations are derived for two equations of state (EOSs) of neutron-star matter: FPS and SLy. Each of these EOSs is unified, that is, it describes the crust and the core of a neutron star using the same physical model. Two versions of the EOS parametrization are considered. In the first one, pressure and mass density are given as functions of the baryon density. In the second version, pressure, mass density, and baryon density are given as functions of the pseudo-enthalpy, which makes this representation particularly useful for 2-D calculations of stationary rotating configurations of neutron stars.Comment: 7 pages, 5 figures, 3 tables, accepted by A&A. In v.2, auxiliary fits (15) and (16) are correcte

    Measuring neutron-star properties via gravitational waves from binary mergers

    Full text link
    We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g. expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For plausible optimistic merger-rate estimates a corresponding detection with Advanced LIGO is likely to happen within an operation time of roughly a year.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Lett., revised version including referee comment

    Triaxial nuclear models and the outer crust of nonaccreting cold neutron stars

    Get PDF
    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick, and Sutherland (BPS) and taking into account for the first time triaxial deformations of nuclei. Two theoretical nuclear models, Hartree-Fock plus pairing in the BCS approximation (HF-BCS) with Skyrme SLy6 parametrization and Hartree-Fock-Bogolyubov (HFB) with Gogny D1S force, are used to calculate the nuclear masses. The two theoretical calculations are compared concerning their neutron drip line, binding energies, magic neutron numbers, and the sequence of nuclei in the outer crust of nonaccreting cold neutron stars, with special emphasis on the effect of triaxial deformations. The BPS model is extended by the higher-order corrections for the atomic binding, screening, exchange and zero-point energies. The influence of the higher-order corrections on the sequence of the outer crust is investigated.Comment: 7 page
    • …
    corecore