410 research outputs found

    Optical properties of heavily boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry

    Get PDF
    The optical properties of heavily boron-doped nanocrystalline diamond films grown by microwave plasma enhanced chemical vapor deposition on silicon substrates are presented. The diamond films are characterized by spectroscopic ellipsometry within the midinfrared, visible, and near-ultraviolet regions. The ellipsometric spectra are also found to be best described by a four-phase model yielding access to the optical constants, which are found distinct from previous nanocrystalline diamond literature values. The presence of a subgap absorption yielding high extinction coefficient values defined clearly the boron incorporated films in comparison to both undoped and composite films, while refractive index values are relatively comparable

    Large-scale real-life implementation of technology-enabled care to maximize hospitals' medical surge preparedness during future infectious disease outbreaks and winter seasons: a viewpoint

    Get PDF
    Hospitals can be overburdened with large numbers of patients with severe infectious conditions during infectious disease outbreaks. Such outbreaks or epidemics put tremendous pressure on the admission capacity of care facilities in the concerned region, negatively affecting the elective program within these facilities. Such situations have been observed during the recent waves of the coronavirus disease pandemic. Owing to the imminent threat of a “tripledemic” by new variants of the coronavirus disease (such as the new Omicron XBB.1.16 strain), influenza, and respiratory syncytial virus during future winter seasons, healthcare agencies should take decisive steps to safeguard hospitals' surge capacity while continuing to provide optimal and safe care to a potentially large number of patients in their trusted home environment. Preparedness of health systems for infectious diseases will require dynamic interaction between a continuous assessment of region-wide available hospital capacity and programs for intensive home treatment of patients who can spread the disease. In this viewpoint, we describe an innovative, dynamic coupling system between hospital surge capacity and cascading activation of a nationwide system for remote patient monitoring. This approach was developed using the multi-criteria decision analysis methodology, considering previously published real-life experiences on remote patient monitoring

    Optical properties of heavily boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry

    Get PDF
    The optical properties of heavily boron-doped nanocrystalline diamond films grown by microwave plasma enhanced chemical vapor deposition on silicon substrates are presented. The diamond films are characterized by spectroscopic ellipsometry within the midinfrared, visible, and near-ultraviolet regions. The ellipsometric spectra are also found to be best described by a four-phase model yielding access to the optical constants, which are found distinct from previous nanocrystalline diamond literature values. The presence of a subgap absorption yielding high extinction coefficient values defined clearly the boron incorporated films in comparison to both undoped and composite films, while refractive index values are relatively comparable

    Monitoring the spread of meticillin-resistant Staphylococcus aureus in The Netherlands from a reference laboratory perspective

    Get PDF
    SummaryBackgroundIn The Netherlands, efforts to control meticillin-resistant Staphylococcus aureus (MRSA) in hospitals have been largely successful due to stringent screening of patients on admission and isolation of those that fall into defined risk categories. However, Dutch hospitals are not free of MRSA, and a considerable number of cases are found that do not belong to any of the risk categories. Some of these may be due to undetected nosocomial transmission, whereas others may be introduced from unknown reservoirs.AimIdentifying multi-institutional clusters of MRSA isolates to estimate the contribution of potential unobserved reservoirs in The Netherlands.MethodsWe applied a clustering algorithm that combines time, place, and genetics to routine data available for all MRSA isolates submitted to the Dutch Staphylococcal Reference Laboratory between 2008 and 2011 in order to map the geo-temporal distribution of MRSA clonal lineages in The Netherlands.FindingsOf the 2966 isolates lacking obvious risk factors, 579 were part of geo-temporal clusters, whereas 2387 were classified as MRSA of unknown origin (MUOs). We also observed marked differences in the proportion of isolates that belonged to geo-temporal clusters between specific multi-locus variable number of tandem repeat analysis (MLVA) clonal complexes, indicating lineage-specific transmissibility. The majority of clustered isolates (74%) were present in multi-institutional clusters.ConclusionThe frequency of MRSA of unknown origin among patients lacking obvious risk factors is an indication of a largely undefined extra-institutional but genetically highly diverse reservoir. Efforts to understand the emergence and spread of high-risk clones require the pooling of routine epidemiological information and typing data into central databases

    Cigarette smoke extract induced exosome release is mediated by depletion of exofacial thiols and can be inhibited by thiol-antioxidants

    Get PDF
    Introduction: Airway epithelial cells have been described to release extracellular vesicles (EVs) with pathological properties when exposed to cigarette smoke extract (CSE). As CSE causes oxidative stress, we investigated whether its oxidative components are responsible for inducing EV release and whether this could be prevented using the thiol antioxidants N-acetyl-L-cysteine (NAC) or glutathione (GSH). Methods: BEAS-2B cells were exposed for 24 h to CSE, H2O2, acrolein, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), bacitracin, rutin or the anti-protein disulfide isomerase (PDI) antibody clone RL90; with or without NAC or GSH. EVs in media were measured using CD63(+)CD81(+) bead-coupled flow cytometry or tunable resistive pulse sensing (TRPS). For characterization by Western Blotting, cryo-transmission electron microscopy and TRPS, EVs were isolated using ultracentrifugation. Glutathione disulfide and GSH in cells were assessed by a GSH reductase cycling assay, and exofacial thiols using Flow cytometry. Results: CSE augmented the release of the EV subtype exosomes, which could be prevented by scavenging thiol-reactive components using NAC or GSH. Among thiol-reactive CSE components, H2O2 had no effect on exosome release, whereas acrolein imitated the NAC-reversible exosome induction. The exosome induction by CSE and acrolein was paralleled by depletion of cell surface thiols. Membrane impermeable thiol blocking agents, but not specific inhibitors of the exofacially located thiol-dependent enzyme PDI, stimulated exosome release. Summary/conclusion: Thiol-reactive compounds like acrolein account for CSE-induced exosome release by reacting with cell surface thiols. As acrolein is produced endogenously during inflammation, it may influence exosome release not only in smokers, but also in ex-smokers with chronic obstructive pulmonary disease. NAC and GSH prevent acrolein-and CSE-induced exosome release, which may contribute to the clinical benefits of NAC treatment

    An Essential Difference between the Flavonoids MonoHER and Quercetin in Their Interplay with the Endogenous Antioxidant Network

    Get PDF
    Antioxidants can scavenge highly reactive radicals. As a result the antioxidants are converted into oxidation products that might cause damage to vital cellular components. To prevent this damage, the human body possesses an intricate network of antioxidants that pass over the reactivity from one antioxidant to another in a controlled way. The aim of the present study was to investigate how the semi-synthetic flavonoid 7-mono-O-(β-hydroxyethyl)-rutoside (monoHER), a potential protective agent against doxorubicin-induced cardiotoxicity, fits into this antioxidant network. This position was compared with that of the well-known flavonoid quercetin. The present study shows that the oxidation products of both monoHER and quercetin are reactive towards thiol groups of both GSH and proteins. However, in human blood plasma, oxidized quercetin easily reacts with protein thiols, whereas oxidized monoHER does not react with plasma protein thiols. Our results indicate that this can be explained by the presence of ascorbate in plasma; ascorbate is able to reduce oxidized monoHER to the parent compound monoHER before oxidized monoHER can react with thiols. This is a major difference with oxidized quercetin that preferentially reacts with thiols rather than ascorbate. The difference in selectivity between monoHER and quercetin originates from an intrinsic difference in the chemical nature of their oxidation products, which was corroborated by molecular quantum chemical calculations. These findings point towards an essential difference between structurally closely related flavonoids in their interplay with the endogenous antioxidant network. The advantage of monoHER is that it can safely channel the reactivity of radicals into the antioxidant network where the reactivity is completely neutralized
    • …
    corecore