2 research outputs found

    Developing an Improved Strategy for the Analysis of Polychlorinated Dibenzo-p-Dioxins/Furans and Dioxin-like Polychlorinated Biphenyls in Contaminated Soils Using a Combination of a One-Step Cleanup Method and Gas Chromatography with Triple Quadrupole Mass Spectrometry

    No full text
    Soils contaminated with polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans (PCDFs), and dioxin-like (dl) polychlorinated biphenyls (PCBs), known as persistent organic pollutants (POPs), have garnered global attention because of their toxicity and persistence in the environment. The standard method for target analytes has been used; however, it is an obstacle in large-scale sample analysis due to the comprehensive sample preparation and high-cost instrumental analysis. Thus, analytical development of inexpensive methods with lower barriers to determine PCDDs/Fs and dl-PCBs in soil is needed. In this study, a one-step cleanup method was developed and validated by combining a multilayer silica gel column and Florisil micro-column followed by gas chromatography with triple quadrupole mass spectrometry (GC-QqQ-MS/MS). To optimize the separation and quantification of 17 PCDDs/Fs and 12 dl-PCBs in soils, the sample cleanup and instrumental conditions were investigated. For quantification method validation, spiking experiments were conducted to determine the linearity of the calibration, recovery, and method detection limit of PCDDs/Fs and dl-PCBs using isotopic dilution GC-QqQ-MS/MS. The applicability of the simultaneous determination of PCDDs/Fs and dl-PCBs was confirmed by the recovery of native target congeners and labeled surrogate congeners spiked into the quality-control and actual soil samples. The results were in good agreement with the requirements imposed by standard methods. The findings in this work demonstrated the high accessibility of the sample cleanup and analysis methods for the efficient determination of PCDDs/Fs and dl-PCBs in contaminated soils

    Real-time determination of volatile organic compounds (VOCs) by ion molecule reaction – mass spectrometry (IMR-MS)

    No full text
    Comprehensive analytical validation studies of a developed ion molecule reaction – mass spectrometer (IMR-MS) were undertaken for the real-time determination of volatile organic compounds (VOCs) in air. The instrument was developed with a focus on promoting chemical ionization (CI) in the reaction chamber by direct sample loading and enhancing maintenance efficiency and reliability of the results. Instrument stability was assessed through a system check and pre-performance check process, and consequently, the instrumental and analytical conditions including the plasma generation, pressure, temperature, and flow rate were successfully optimized. Relevant performance characteristics, such as mass resolution, mass detection range, accuracy, and precision were also investigated by VOC standards composed of benzene, toluene, perfluorotoluene, propylbenzene, and octane. To evaluate whether the performance of the technology is comparable to already accepted techniques, the quantitative results of the IMR-MS were compared with those of a commercial mass spectrometer. This evaluation was successful and suggests the applicability of the technology for spillage accidents of hazardous chemicals and identification of odor-causing substances as well as for real-time gas analysis.</p
    corecore