308 research outputs found
Localization to Enhance Security and Services in Wi-Fi Networks under Privacy Constraints
Developments of seamless mobile services are faced with two broad challenges, systems security and user privacy - access to wireless systems is highly insecure due to the lack of physical boundaries and, secondly, location based services (LBS) could be used to extract highly sensitive user information. In this paper, we describe our work on developing systems which exploit location information to enhance security and services under privacy constraints. We describe two complimentary methods which we have developed to track node location information within production University Campus Networks comprising of large numbers of users. The location data is used to enhance security and services. Specifically, we describe a method for creating geographic firewalls which allows us to restrict and enhance services to individual users within a specific containment area regardless of physical association. We also report our work on LBS development to provide visualization of spatio-temporal node distribution under privacy considerations
Randomized Dynamical Decoupling Techniques for Coherent Quantum Control
The need for strategies able to accurately manipulate quantum dynamics is
ubiquitous in quantum control and quantum information processing. We
investigate two scenarios where randomized dynamical decoupling techniques
become more advantageous with respect to standard deterministic methods in
switching off unwanted dynamical evolution in a closed quantum system: when
dealing with decoupling cycles which involve a large number of control actions
and/or when seeking long-time quantum information storage. Highly effective
hybrid decoupling schemes, which combine deterministic and stochastic features
are discussed, as well as the benefits of sequentially implementing a
concatenated method, applied at short times, followed by a hybrid protocol,
employed at longer times. A quantum register consisting of a chain of spin-1/2
particles interacting via the Heisenberg interaction is used as a model for the
analysis throughout.Comment: 7 pages, 2 figures. Replaced with final version. Invited talk
delivered at the XXXVI Winter Colloquium on the Physics of Quantum
Electronics, Snowbird, Jan 2006. To be published in J. Mod. Optic
Enhanced Convergence and Robust Performance of Randomized Dynamical Decoupling
We demonstrate the advantages of randomization in coherent quantum dynamical
control. For systems which are either time-varying or require decoupling cycles
involving a large number of operations, we find that simple randomized
protocols offer superior convergence and stability as compared to deterministic
counterparts. In addition, we show how randomization always allows to
outperform purely deterministic schemes at long times, including combinatorial
and concatenated methods. General criteria for optimally interpolating between
deterministic and stochastic design are proposed and illustrated in explicit
decoupling scenarios relevant to quantum information storage.Comment: 4 pages, 3 figures, replaced with final versio
Magic composite pulses
I describe composite pulses during which the average dipolar interactions
within a spin ensemble are controlled while realizing a global rotation. The
construction method used is based on the average Hamiltonian theory and rely on
the geometrical properties of the spin-spin dipolar interaction only. I present
several such composite pulses robust against standard experimental defects in
NRM: static or radio-frequency field miscalibration, fields inhomogeneities.
Numerical simulations show that the magic sandwich pulse sequence, a pulse
sequence that reverse the average dipolar field while applied, is plagued by
defects originating from its short initial and final \pi/2 radio-frequency
pulses. Using the magic composite pulses instead of \pi/2 pulses improves the
magic sandwich effect. A numerical test using a classical description of NMR
allows to check the validity of the magic composite pulses and estimate their
efficiency.Comment: 22 pages, 6 figure
Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation
The optimal -pulse dynamical decoupling discovered by Uhrig for a
spin-boson mmodel [Phys. Rev. Lett, {\bf 98}, 100504 (2007)] is proved to be
universal in suppressing to the pure dephasing or the longitudinal
relaxation of a qubit (or spin-1/2) coupled to a generic bath in a short-time
evolution of duration . It is also found that for the purpose of suppressing
the longitudinal relaxation, an ideal Uhrig -pulse sequence can be
generalized to a sequence consisting of the ideal one superimposed with
finite-duration pulses satisfying certain symmetry requirements.Comment: 4 pages, 1 figure
VerSum: Verifiable Computations over Large Public Logs
VerSum allows lightweight clients to outsource expensive computations over large and frequently changing data structures, such as the Bitcoin or Namecoin blockchains, or a Certificate Transparency log. VerSum clients ensure that the output is correct by comparing the outputs from multiple servers. VerSum assumes that at least one server is honest, and crucially, when servers disagree, VerSum uses an efficient conflict resolution protocol to determine which server(s) made a mistake and thus obtain the correct output.
VerSum's contribution lies in achieving low server-side overhead for both incremental re-computation and conflict resolution, using three key ideas: (1) representing the computation as a functional program, which allows memoization of previous results; (2) recording the evaluation trace of the functional program in a carefully designed computation history to help clients determine which server made a mistake; and (3) introducing a new authenticated data structure for sequences, called SeqHash, that makes it efficient for servers to construct summaries of computation histories in the presence of incremental re-computation. Experimental results with an implementation of VerSum show that VerSum can be used for a variety of computations, that it can support many clients, and that it can easily keep up with Bitcoin's rate of new blocks with transactions.United States. Defense Advanced Research Projects Agency. Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH) Program (Contract N66001-10-2-4089)National Science Foundation (U.S.) (Award CNS-1053143)National Science Foundation (U.S.) (Award CNS-1413920
Environment Assisted Metrology with Spin Qubit
We investigate the sensitivity of a recently proposed method for precision
measurement [Phys. Rev. Lett. 106, 140502 (2011)], focusing on an
implementation based on solid-state spin systems. The scheme amplifies a
quantum sensor response to weak external fields by exploiting its coupling to
spin impurities in the environment. We analyze the limits to the sensitivity
due to decoherence and propose dynamical decoupling schemes to increase the
spin coherence time. The sensitivity is also limited by the environment spin
polarization; therefore we discuss strategies to polarize the environment spins
and present a method to extend the scheme to the case of zero polarization. The
coherence time and polarization determine a figure of merit for the
environment's ability to enhance the sensitivity compared to echo-based sensing
schemes. This figure of merit can be used to engineer optimized samples for
high-sensitivity nanoscale magnetic sensing, such as diamond nanocrystals with
controlled impurity density.Comment: 9 pages, 6 figure
Environment Assisted Precision Measurement
We describe a method to enhance the sensitivity of precision measurements
that takes advantage of a quantum sensor's environment to amplify its response
to weak external perturbations. An individual qubit is used to sense the
dynamics of surrounding ancillary qubits, which are in turn affected by the
external field to be measured. The resulting sensitivity enhancement is
determined by the number of ancillas that are coupled strongly to the sensor
qubit; it does not depend on the exact values of the coupling strengths and is
resilient to many forms of decoherence. The method achieves nearly
Heisenberg-limited precision measurement, using a novel class of entangled
states. We discuss specific applications to improve clock sensitivity using
trapped ions and magnetic sensing based on electronic spins in diamond.Comment: 4 pages, 3 figure
Quantum decoherence of a charge qubit in a spin-fermion model
We consider quantum decoherence in solid-state systems by studying the
transverse dynamics of a single qubit interacting with a fermionic bath and
driven by external pulses. Our interest is in investigating the extent to which
the lost coherence can be restored by the application of external pulses to the
qubit. We show that the qubit evolution under various pulse sequences can be
mapped onto Keldysh path integrals. This approach allows a simple diagrammatic
treatment of different bath excitation processes contributing to qubit
decoherence. We apply this theory to the evolution of the qubit coupled to the
Andreev fluctuator bath in the context of widely studied superconducting
qubits. We show that charge fluctuations within the Andreev-fluctuator model
lead to a 1/f noise spectrum with a characteristic temperature depedence. We
discuss the strategy for suppression of decoherence by the application of
higher-order (beyond spin echo) pulse sequences.Comment: 7 pages, 4 figures; extended version (accepted to Phys. Rev. B
Robust dynamical decoupling
Quantum computers, which process information encoded in quantum mechanical
systems, hold the potential to solve some of the hardest computational
problems. A substantial obstacle for the further development of quantum
computers is the fact that the life time of quantum information is usually too
short to allow practical computation. A promising method to increase the life
time, known as dynamical decoupling, consists of applying a periodic series of
inversion pulses to the quantum bits. In the present review, we give an
overview of this technique and compare different pulse sequences proposed
earlier. We show that pulse imperfections, which are always present in
experimental implementations, limit the performance of dynamical decoupling.
The loss of coherence due to the accumulation of pulse errors can even exceed
the perturbation from the environment. This effect can be largely eliminated by
a judicious design of pulses and sequences. The corresponding sequences are
largely immune to pulse imperfections and provide an increase of the coherence
time of the system by several orders of magnitude
- âŚ