1,586 research outputs found

    REDUCING INTERFACIAL RESISTANCE OF LI-ION BATTERIES THROUGH ATOMIC LAYER DEPOSITION

    Get PDF
    The attention to solid state batteries are increasing as electrical vehicles start to dominate automobile industry. Solid-state batteries (SSBs) are type of Li-ion batteries that have solid medium. They are regarded as the next-generation energy storage device for electric vehicles because they can potentially solve the problems of conventional Li-ion batteries. In conventional Li-ion batteries, when delivered in high energy densities, they had extremely high possibility for inflammation due to the presence of flammable liquid organic electrolytes. Also, though the use of Li metal anode may significantly increase energy density, likelihood of short circuiting the cell due to the growth of Li dendrites prevents the commercialization of Li-ion batteries with Li anodes. Thus, in order to provide safer and higher energy batteries, SSBs with nonflammable and mechanically robust SSEs which may suppress Li dendrite growth came up as an alternative solution. However, there are new challenges that need to be overcome for SSBs. Not only are they more expensive than conventional Li-ion batteries, but due to solid-characteristic of the electrolyte, SSBs have critical flaw of high resistance at the SSE-electrode interfaces. The performance of SSBs in high temperature environment may be safer, but the thick SSE membrane and low active loading with the electrodes do not show better performance when compared to the liquid electrolyte cells. To enhance the battery performance, the interfacial resistance in SSBs needs to be reduced. Therefore, the focus of our lab is to come up with a novel coating method that has the least interfacial resistance. This new study will utilize the atomic layer deposition (ALD) technique to coat metal oxides on electrodes and enhance the battery performance, as previous research by many scientists has already proven that metal oxide coatings are effective at reducing the interfacial resistance in SSBs.Undergraduat

    Multipar-T: Multiparty-Transformer for Capturing Contingent Behaviors in Group Conversations

    Full text link
    As we move closer to real-world AI systems, AI agents must be able to deal with multiparty (group) conversations. Recognizing and interpreting multiparty behaviors is challenging, as the system must recognize individual behavioral cues, deal with the complexity of multiple streams of data from multiple people, and recognize the subtle contingent social exchanges that take place amongst group members. To tackle this challenge, we propose the Multiparty-Transformer (Multipar-T), a transformer model for multiparty behavior modeling. The core component of our proposed approach is the Crossperson Attention, which is specifically designed to detect contingent behavior between pairs of people. We verify the effectiveness of Multipar-T on a publicly available video-based group engagement detection benchmark, where it outperforms state-of-the-art approaches in average F-1 scores by 5.2% and individual class F-1 scores by up to 10.0%. Through qualitative analysis, we show that our Crossperson Attention module is able to discover contingent behavior.Comment: 7 pages, 4 figures, IJCA

    Materials and extracellular matrix rigidity highlighted in tissue damages and diseases: Implication for biomaterials design and therapeutic targets

    Get PDF
    Rigidity (or stiffness) of materials and extracellular matrix has proven to be one of the most significant extracellular physicochemical cues that can control diverse cell behaviors, such as contractility, motility, and spreading, and the resultant pathophysiological phenomena. Many 2D materials engineered with tunable rigidity have enabled researchers to elucidate the roles of matrix biophysical cues in diverse cellular events, including migration, lineage specification, and mechanical memory. Moreover, the recent findings accumulated under 3D environments with viscoelastic and remodeling properties pointed to the importance of dynamically changing rigidity in cell fate control, tissue repair, and disease progression. Thus, here we aim to highlight the works related with material/matrix-rigidity-mediated cell and tissue behaviors, with a brief outlook into the studies on the effects of material/matrix rigidity on cell behaviors in 2D systems, further discussion of the events and considerations in tissue-mimicking 3D conditions, and then examination of the in vivo findings that concern material/matrix rigidity. The current discussion will help understand the material/matrix-rigidity-mediated biological phenomena and further leverage the concepts to find therapeutic targets and to design implantable materials for the treatment of damaged and diseased tissues

    Relationship between Mothers' Diagnosis of Cervical Cancer and Attitudes toward Preventing Cervical Cancer in Their Pubertal Daughters

    Get PDF
    PURPOSE: This study was conducted to examine the relationship between a mother's diagnosis of cervical cancer and attitudes toward cervical cancer prevention in their daughters. Their intention to recommend human papillomavirus (HPV) vaccination for their daughters, their confidence in 8 methods for cervical cancer prevention with their daughters, and their negative emotions about the assumption of their daughter's HPV infection. METHODS: This study was a secondary analysis of data from the study of maternal health beliefs about preventing cervical cancer. The study sample were women who reported whether ever diagnosed with cervical cancer, who had pubertal daughters (n=1,578). Data were analyzed by cross-tabulation analysis, Spearman's rank correlation analysis, and logistic regression. RESULTS: Mothers diagnosed with cervical cancer were more confident in using methods to prevent cervical cancer in their daughters (Z=−4.42, p<.001) and were more likely to feel negative emotions about the assumption of their daughters' HPV infection (Z=−2.44, p=.015) than mothers who were not diagnosed. Significant factors influencing their intention to recommend the HPV vaccination to their daughters were the mother's confidence in preventing cervical cancer in their daughters (odds ratio [OR], 1.003; 95% confidence interval [CI], 1.002–1.004) and their negative emotions about the assumption of their daughters' HPV infection (OR,1.016; 95% CI, 1.004–1.028). CONCLUSION: For the early prevention of cervical cancer in pubertal daughters, the education of their mothers should include interventions to increase confidence in preventing cervical cancer in their daughters and sensitivity of HPV infection toward daughters

    Liver transplantation for advanced hepatocellular carcinoma

    Get PDF
    There has been ongoing debate that the Milan criteria may be too strict that a significant number of patients who could benefit from liver transplantation (LT) might have been excluded. Based on this idea, various studies have been conducted to further expand the Milan criteria and give more HCC patients a chance of cure. In deceased donor LT (DDLT) setting, expansion of the criteria is relatively tempered because the results of LT for HCC should be comparable to those of patients with non-malignant indications. On the other hand, in living donor LT (LDLT) situation, liver grafts are not public resources. The acceptable target outcomes for LDLT might be much lower than those for DDLT. Patients with biologically favorable tumors might have excellent survivals after LT despite morphological advanced HCCs. Therefore, the significance and utility of biological tumor parameters for selecting suitable LT candidates have been increased to predict HCC recurrence after LT. Although there is no consensus regarding the use of prognostic biomarkers in LT selection criteria for HCC, the combination of conventional morphological parameters and new promising biomarkers could help us refine and expand the LT criteria for HCC in the near future

    Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes

    Get PDF
    We demonstrate the use of graphene based transparent sheets as a p-type current spreading layer in GaN light emitting diodes (LEDs). Very thin Ni/Au was inserted between graphene and p-type GaN to reduce contact resistance, which reduced contact resistance from similar to 5.5 to similar to 0.6 Omega/ cm(2), with no critical optical loss. As a result, LEDs with metal-graphene provided current spreading and injection into the p-type GaN layer, enabling three times enhanced electroluminescent intensity compared with those with graphene alone. We confirmed very strong blue light emission in a large area of the metal-graphene layer by analyzing image brightness.open281

    Carbon Nanotubes in Nanocomposites and Hybrids with Hydroxyapatite for Bone Replacements

    Get PDF
    Hydroxyapatite (HA), as a bone mineral component, has been an attractive bioceramic for the reconstruction of hard tissues. However, its poor mechanical properties, including low fracture toughness and tensile strength, have been a significant challenge to the application of HA for the replacement of load-bearing and/or large bone defects. Among materials studied to reinforce HA, carbon nanotubes (CNTs: single-walled or multiwalled) have recently gained significant attention because of their unprecedented mechanical properties (high strength and toughness) and physicochemical properties (high surface area, electrical and thermal conductivity, and low weight). Here, we review recent studies of the organization of HA-CNTs at the nanoscale, with a particular emphasis on the functionalization of CNTs and their dispersion within an HA matrix and induction of HA mineralization. The organization of CNTs and HA implemented at the nanoscale can further be developed in the form of coatings, nanocomposites, and hybrid powders to enable potential applications in hard tissue reconstruction

    Bioprocess Forces and Their Impact on Cell Behavior: Implications for Bone Regeneration Therapy

    Get PDF
    Bioprocess forces such as shear stress experienced during routine cell culture are considered to be harmful to cells. However, the impact of physical forces on cell behavior is an area of growing interest within the tissue engineering community, and it is widely acknowledged that mechanical stimulation including shear stress can enhance osteogenic differentiation. This paper considers the effects of bioprocess shear stress on cell responses such as survival and proliferation in several contexts, including suspension-adapted cells used for recombinant protein and monoclonal antibody manufacture, adherent cells for therapy in suspension, and adherent cells attached to their growth substrates. The enhanced osteogenic differentiation that fluid flow shear stress is widely found to induce is discussed, along with the tissue engineering of mineralized tissue using perfusion bioreactors. Recent evidence that bioprocess forces produced during capillary transfer or pipetting of cell suspensions can enhance osteogenic responses is also discussed
    corecore