43 research outputs found

    MicroRNAs located in the Hox gene clusters are implicated in huntington\u27s disease pathogenesis

    Get PDF
    Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington\u27s disease (HD). MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex (Brodmann Area 9) of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and miR-1247-5p) up-regulated in HD at genome-wide significance (FDR q-value \u3c 0.05). Three of these, miR-196a-5p, miR-196b-5p and miR-615-3p, were expressed at near zero levels in control brains. Expression was verified for all five miRNAs using reverse transcription quantitative PCR and all but miR-1247-5p were replicated in an independent sample (8HD/8C). Ectopic miR-10b-5p expression in PC12 HTT-Q73 cells increased survival by MTT assay and cell viability staining suggesting increased expression may be a protective response. All of the miRNAs but miR-1247-5p are located in intergenic regions of Hox clusters. Total mRNA sequencing in the same samples identified fifteen of 55 genes within the Hox cluster gene regions as differentially expressed in HD, and the Hox genes immediately adjacent to the four Hox cluster miRNAs as up-regulated. Pathway analysis of mRNA targets of these miRNAs implicated functions for neuronal differentiation, neurite outgrowth, cell death and survival. In regression models among the HD brains, huntingtin CAG repeat size, onset age and age at death were independently found to be inversely related to miR-10b-5p levels. CAG repeat size and onset age were independently inversely related to miR-196a-5p, onset age was inversely related to miR-196b-5p and age at death was inversely related to miR-615-3p expression. These results suggest these Hox-related miRNAs may be involved in neuroprotective response in HD. Recently, miRNAs have shown promise as biomarkers for human diseases and given their relationship to disease expression, these miRNAs are biomarker candidates in HD

    Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation

    Get PDF
    Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR–significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression–SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD–relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms

    Evaluation of Parkinson Disease Risk Variants as Expression-QTLs

    Get PDF
    <div><p>The recent Parkinson Disease GWAS Consortium meta-analysis and replication study reports association at several previously confirmed risk loci <em>SNCA</em>, <em>MAPT</em>, <em>GAK/DGKQ</em>, and <em>HLA</em> and identified a novel risk locus at <em>RIT2</em>. To further explore functional consequences of these associations, we investigated modification of gene expression in prefrontal cortex brain samples of pathologically confirmed PD cases (N = 26) and controls (N = 24) by 67 associated SNPs in these 5 loci. Association between the eSNPs and expression was evaluated using a 2-degrees of freedom test of both association and difference in association between cases and controls, adjusted for relevant covariates. SNPs at each of the 5 loci were tested for <em>cis</em>-acting effects on all probes within 250 kb of each locus. <em>Trans</em>-effects of the SNPs on the 39,122 probes passing all QC on the microarray were also examined. From the analysis of <em>cis</em>-acting SNP effects, several SNPs in the <em>MAPT</em> region show significant association to multiple nearby probes, including two strongly correlated probes targeting the gene <em>LOC644246</em> and the duplicated genes <em>LRRC37A</em> and <em>LRRC37A2</em>, and a third uncorrelated probe targeting the gene <em>DCAKD</em>. Significant <em>cis</em>-associations were also observed between SNPs and two probes targeting genes in the HLA region on chromosome 6. Expanding the association study to examine <em>trans</em> effects revealed an additional 23 SNP-probe associations reaching statistical significance (p<2.8×10<sup>−8</sup>) including SNPs from the <em>SNCA, MAPT</em> and <em>RIT2</em> regions. These findings provide additional context for the interpretation of PD associated SNPs identified in recent GWAS as well as potential insight into the mechanisms underlying the observed SNP associations.</p> </div

    Brain Sample Characteristics.

    No full text
    *<p> <i>significantly different between cases and controls (p = 0.02).</i></p

    <i>MAPT</i> region probes and SNPs involved in significant <i>cis</i> eSNP relationships.

    No full text
    <p>Three probes in the <i>MAPT</i> region on chromosme 17 showing significant association with PD risk SNPs are displayed. Significant SNP associations with A_24_P110521 located in the duplicated genes <i>LRRC37A</i> and <i>LRRC37A2</i> are shown in blue, while SNPs associated with A_24_P221327 located in <i>LOC644246</i> are shown in green and SNPs associated with A_24_P58331 (in <i>DCAKD</i>) are shown in red.</p

    HLA region probes and SNPs involved in significant <i>cis</i> eSNP relationships.

    No full text
    <p>Two probes in the HLA region on chromosme 6 showing significant association with PD risk SNPs are shown on the alternative sequence haplotype chr6_ssto_hap7. Six PD risk SNPs (shown in green) showed significant association to A_24_P326084 located in <i>HLA-DQA1</i>, while four SNPs (shown in red) had significant association to A_24P852756, located in <i>HLA-DQA2</i>.</p
    corecore