4 research outputs found

    Hypertension in children with chronic kidney disease: pathophysiology and management

    Get PDF
    Arterial hypertension is very common in children with all stages of chronic kidney disease (CKD). While fluid overload and activation of the renin–angiotensin system have long been recognized as crucial pathophysiological pathways, sympathetic hyperactivation, endothelial dysfunction and chronic hyperparathyroidism have more recently been identified as important factors contributing to CKD-associated hypertension. Moreover, several drugs commonly administered in CKD, such as erythropoietin, glucocorticoids and cyclosporine A, independently raise blood pressure in a dose-dependent fashion. Because of the deleterious consequences of hypertension on the progression of renal disease and cardiovascular outcomes, an active screening approach should be adapted in patients with all stages of CKD. Before one starts antihypertensive treatment, non-pharmacological options should be explored. In hemodialysis patients a low salt diet, low dialysate sodium and stricter dialysis towards dry weight can often achieve adequate blood pressure control. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers are first-line therapy for patients with proteinuria, due to their additional anti-proteinuric properties. Diuretics are a useful alternative for non-proteinuric patients or as an add-on to renin–angiotensin system blockade. Multiple drug therapy is often needed to maintain blood pressure below the 90th percentile target, but adequate blood pressure control is essential for better renal and cardiovascular long-term outcomes

    Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children

    No full text
    Urinary epidermal growth factor (uEGF) has recently been identified as a promising biomarker of chronic kidney disease (CKD) progression in adults with glomerular disease. Low levels of uEGF predict CKD progression and appear to reflect the extent of tubulointerstitial damage. We investigated the relevance of uEGF in pediatric CKD. We performed a post hoc analysis of the Cardiovascular Comorbidity in Children with CKD (4C) study, which prospectively follows children aged 6-17 years with baseline estimated glomerular filtration rate (eGFR) of 10-60 ml/min/1.73 m(2). uEGF levels were measured in archived urine collected within 6 months of enrollment. Congenital abnormalities of the kidney and urinary tract were the most common cause of CKD, with glomerular diseases accounting for <10% of cases. Median eGFR at baseline was 28 ml/min/1.73 m(2), and 288 of 623 participants (46.3%) reached the composite endpoint of CKD progression (50% eGFR loss, eGFR < 10 ml/min/1.73 m(2), or initiation of renal replacement therapy). In a Cox proportional hazards model, higher uEGF/Cr was associated with a decreased risk of CKD progression (HR 0.76; 95% CI 0.69-0.84) independent of age, sex, baseline eGFR, primary kidney disease, proteinuria, and systolic blood pressure. The addition of uEGF/Cr to a model containing these variables resulted in a significant improvement in C-statistics, indicating better prediction of the 1-, 2- and 3-year risk of CKD progression. External validation in a prospective cohort of 222 children with CKD demonstrated comparable results. Thus, uEGF may be a useful biomarker to predict CKD progression in children with CKD
    corecore