5 research outputs found

    Autoantibodies in Systemic Lupus Erythematosus Target Mitochondrial RNA

    Get PDF
    The mitochondrion supplies energy to the cell and regulates apoptosis. Unlike other mammalian organelles, mitochondria are formed by binary fission and cannot be directly produced by the cell. They contain numerous copies of a compact circular genome that encodes RNA molecules and proteins involved in mitochondrial oxidative phosphorylation. Whereas, mitochondrial DNA (mtDNA) activates the innate immune system if present in the cytosol or the extracellular milieu, it is also the target of circulating autoantibodies in systemic lupus erythematosus (SLE). However, it is not known whether mitochondrial RNA is also recognized by autoantibodies in SLE. In the present study, we evaluated the presence of autoantibodies targeting mitochondrial RNA (AmtRNA) in SLE. We quantified AmtRNA in an inducible model of murine SLE. The AmtRNA were also determined in SLE patients and healthy volunteers. AmtRNA titers were measured in both our induced model of murine SLE and in human SLE, and biostatistical analyses were performed to determine whether the presence and/or levels of AmtRNA were associated with clinical features expressed by SLE patients. Both IgG and IgM classes of AmtRNA were increased in SLE patients (n = 86) compared to healthy controls (n = 30) (p < 0.0001 and p = 0.0493, respectively). AmtRNA IgG levels correlated with anti-mtDNA-IgG titers (rs = 0.54, p < 0.0001) as well as with both IgG and IgM against β-2-glycoprotein I (anti-β2GPI; rs = 0.22, p = 0.05), and AmtRNA-IgG antibodies were present at higher levels when patients were positive for autoantibodies to double-stranded-genomic DNA (p < 0.0001). AmtRNA-IgG were able to specifically discriminate SLE patients from healthy controls, and were negatively associated with plaque formation (p = 0.04) and lupus nephritis (p = 0.03). Conversely, AmtRNA-IgM titers correlated with those of anti-β2GPI-IgM (rs = 0.48, p < 0.0001). AmtRNA-IgM were higher when patients were positive for anticardiolipin antibodies (aCL-IgG: p = 0.01; aCL-IgM: p = 0.002), but AmtRNA-IgM were not associated with any of the clinical manifestations assessed. These findings identify mtRNA as a novel mitochondrial antigen target in SLE, and support the concept that mitochondria may provide an important source of circulating autoantigens in SLE

    Étude du rôle d'Ash2L, un régulateur de la chromatine, dans la résilience nucléaire au stress mécanique

    No full text
    Titre de l'écran-titre (visionné le 8 août 2023)Les changements dans la forme et la déformation du noyau qui déterminent la plasticité nucléaire influencent le potentiel métastatique des cellules tumorales. Entre autres, la migration cellulaire dans un environnement confiné repose sur de grandes déformations nucléaires qui sont limitées par la rigidité nucléaire. L'enveloppe nucléaire (NE) est souvent fragilisée, entraînant une rupture de la NE durant l'interphase. En outre, les cellules cancéreuses sont sujettes aux ruptures spontanées de la NE et subissent des ruptures de la NE lors de la migration confinée. Bien que les cellules cancéreuses survivent à des événements répétés de ruptures nucléaires en réparant leur enveloppe nucléaire, une perte transitoire et répétée de l'intégrité de celle-ci est associée à l'accumulation de dommages à l'ADN, à l'instabilité génomique et à la promotion d'un phénotype tumoral invasif. Ainsi, l'étude des mécanismes impliqués pourrait identifier de nouvelles cibles thérapeutiques. Récemment, nous avons décrit la protéine adénovirale E4orf4 comme un nouvel outil pour déchiffrer ces mécanismes. E4orf4 induit une destruction sélective des cellules tumorales en provoquant une forte incidence de ruptures de la NE. Nous avons identifié Ash2L, un régulateur épigénétique, comme un nouveau substrat de la tyrosine kinase Src qui est dérégulée par E4orf4. La déplétion d'Ash2L, ou sa phosphorylation site-spécifique, interfèrent avec les ruptures de la NE induites par E4orf4 ou par une carence en lamine A. Notre hypothèse est qu'Ash2L et sa phosphorylation modulent la résilience mécanique de la NE, en partie, en régulant l'organisation de la chromatine. Le but de ce projet de maîtrise était d'étudier les mécanismes impliqués dans la régulation de la résilience nucléaire au stress mécanique par Ash2L, en poursuivant deux objectifs spécifiques : 1) Analyser la contribution de l'organisation de la chromatine à l'effet régulateur d'Ash2L sur les ruptures de l'enveloppe nucléaire ; 2) Analyser l'impact d'Ash2L et de sa phosphorylation sur l'organisation de la chromatine. Afin d'analyser la contribution de l'organisation de la chromatine à l'effet régulateur de Ash2L, nous avons utilisé des inhibiteurs des histones méthyltransférases affectant la compaction de la chromatine. Par microscopie en temps réel, nous montrons que de courts traitements avec ces inhibiteurs dans les cellules déplétées en Ash2L rétablissent partiellement les phénotypes de rupture de la NE induits par E4orf4 ou par une carence an lamines A. De plus, la déplétion d'Ash2L ou sa phosphorylation site-spécifique réduit la triméthylation de l'histone H3 sur la lysine 4 et semble modifier l'organisation des foyers d'hétérochromatine enrichis en histone H3 triméthylée sur la lysine 27. Enfin, nous avons découvert que la déplétion d'Ash2L réduit le potentiel migratoire des cellules métastatiques de carcinomes rénaux RCC4 dans un microenvironnement dense. Les résultats obtenus suggèrent qu'Ash2L et sa phosphorylation régulent la résilience nucléaire au stress mécanique en modifiant l'état de compaction de la chromatine. Ash2L pourrait donc contribuer à la réponse adaptative des cellules cancéreuses aux changements du microenvironnement qui favorisent l'invasion tumorale.Changes in the shape and deformability of the nucleus, that determines nuclear plasticity, influence the metastatic potential of tumor cells. Among other events, cell migration in a confined environment relies on large nuclear deformations which are limited by nuclear rigidity. The nuclear envelope (NE) is often weakened, leading to NE rupture during interphase. In addition, cancer cells are prone to spontaneous NE ruptures and undergo NE ruptures during confined migration. Although cancer cells survive repeated events of nuclear rupture by repairing the NE, transient and repeated NE integrity loss is associated with DNA damage accumulation, genomic instability, and the promotion of an invasive tumor phenotype. Therefore, the study of the mechanisms involved could identify new therapeutic targets. Recently, we described the adenoviral protein, E4orf4, as a new tool to decipher these mechanisms. E4orf4 induces selective destruction of tumor cells causing a high incidence of NE ruptures. We have identified Ash2L, an epigenetic regulator, as a novel substrate for the Src tyrosine kinase which is deregulated by E4orf4. Ash2L depletion, or its site-specific phosphorylation, interferes with NE ruptures induced by E4orf4 or by lamin A deficiency. We hypothesize that Ash2L and its phosphorylation modulate the mechanical resilience of NE, in part, by regulating chromatin organization. This master's project aimed to study the mechanisms involved in the regulation of nuclear resilience to mechanical stress by Ash2L and pursued two specific objectives: 1) To analyze the contribution of chromatin organization to the regulatory effect of Ash2L on nuclear envelope ruptures; 2) To analyze the impact of Ash2L and its phosphorylation on the organization of chromatin. To analyze the contribution of chromatin organization to the regulatory effect of Ash2L, we used histone methyltransferase inhibitors affecting chromatin compaction. By real-time microscopy, we show that short treatments with these inhibitors in cells depleted of Ash2L partially restore the NE disruption phenotypes induced by E4orf4 or by lamin A deficiency. In addition, Ash2L depletion or its site-specific phosphorylation reduces the trimethylation of histone H3 on lysine 4 and appears to modify the organization of heterochromatin foci enriched in trimethylated histone H3 on lysine 27. Finally, we discovered that the depletion of Ash2L reduces the migratory potential of metastatic RCC4 renal carcinoma cells in a dense microenvironment. The results obtained suggest that Ash2L and its phosphorylation regulate nuclear resilience to mechanical stress by modifying the state of chromatin compaction. Ash2L may therefore contribute to the adaptive response of cancer cells to changes in the microenvironment that promote tumor invasion

    Platelets release mitochondrial antigens in systemic lupus erythematosus

    No full text
    The accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle. Mitochondrial release in patients with SLE correlates with platelet degranulation. This process requires the stimulation of platelet Fc gamma RIIA, a receptor for immune complexes. Because mice lack Fc gamma RIIA and murine platelets are completely devoid of receptor capable of binding IgG-containing immune complexes, we used transgenic mice expressing Fc gamma RIIA for our in vivo investigations. Fc gamma RIIA expression in lupus-prone mice led to the recruitment of platelets in kidneys and to the release of mitochondria in vivo. Using a reporter mouse with red fluorescent protein targeted to the mitochondrion, we confirmed platelets as a source of extracellular mitochondria driven by Fc gamma RIIA and its cosignaling by the fibrinogen receptor alpha 2b beta 3 in vivo. These findings suggest that platelets might be a key source of mitochondrial antigens in SLE and might be a therapeutic target for treating SLE
    corecore