9,244 research outputs found

    Research Notes : Evaluation of chlorophyll-retention near-isogenic lines of soybeans

    Get PDF
    The phenomenon of chlorophyll retention in soybeans [Glycine max (L.) Merrill] is worthy of investigation for several different reasons: 1) it may have a physiological impact upon yield, 2) it may be useful in helping to explain the process of senescence, and 3) it causes production of green seeds, which may differ from normal yellow seeds in chemical composition, size, germination, nutritional qualities, and/or potential usefulness as vegetable types. Different genetic systems control the retention of chlorophyll, which results in green seed color (1). Ten near-isogenic lines in both \u27Clark\u27 and \u27Harosoy\u27 backgrounds are currently being studied to characterize and compare the different chlorophyll-retention types with their normal counter-parts

    Dynamics of entanglement of bosonic modes on symmetric graphs

    Full text link
    We investigate the dynamics of an initially disentangled Gaussian state on a general finite symmetric graph. As concrete examples we obtain properties of this dynamics on mean field graphs of arbitrary sizes. In the same way that chains can be used for transmitting entanglement by their natural dynamics, these graphs can be used to store entanglement. We also consider two kinds of regular polyhedron which show interesting features of entanglement sharing.Comment: 14 pages, 11 figures, Accepted for publication in Physics Letters

    A new measure based on degree distribution that links information theory and network graph analysis

    Get PDF
    BACKGROUND: Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. RESULTS: We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Ω), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Ω do not correlate well with the SD metric. CONCLUSIONS: The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties

    Arrays of Cooper Pair Boxes Coupled to a Superconducting Reservoir: `Superradiance' and `Revival.'

    Full text link
    We consider an array of Cooper Pair Boxes, each of which is coupled to a superconducting reservoir by a capacitive tunnel junction. We discuss two effects that probe not just the quantum nature of the islands, but also of the superconducting reservoir coupled to them. These are analogues to the well-known quantum optical effects `superradiance,' and `revival.' When revival is extended to multiple systems, we find that `entanglement revival' can also be observed. In order to study the above effects, we utilise a highly simplified model for these systems in which all the single-electron energy eigenvalues are set to be the same (the strong coupling limit), as are the charging energies of the Cooper Pair Boxes, allowing the whole system to be represented by two large coupled quantum spins. Although this simplification is drastic, the model retains the main features necessary to capture the phenomena of interest. Given the progress in superconducting box experiments over recent years, it is possible that experiments to investigate both of these interesting quantum coherent phenomena could be performed in the forseeable future.Comment: 23 pages, 5 figures Clarifications made as recommended by refere

    Physical Electronics

    Get PDF
    Contains reports on three research projects

    Topographic, Hydraulic, and Vegetative Controls on Bar and Island Development in Mixed Bedrock‐Alluvial, Multichanneled, Dryland Rivers

    Get PDF
    We investigate processes of bedrock‐core bar and island development in a bedrock‐influenced anastomosed reach of the Sabie River, Kruger National Park (KNP), eastern South Africa. For sites subject to alluvial stripping during an extreme flood event (~4470‐5630 m3 s‐1) in 2012, pre‐ and post‐flood aerial photographs and LiDAR data, 2D morphodynamic simulations, and field observations reveal that the thickest surviving alluvial deposits tend to be located over bedrock topographic lows. At a simulated peak discharge (~4500 m3 s‐1), most sediment (sand, fine gravel) is mobile but localized deposition on bedrock topographic highs is possible. At lower simulated discharges (<1000 m3 s‐1), topographic highs are not submerged, and deposition occurs in lower elevation areas, particularly in areas disconnected from the main channels during falling stage. Field observations suggest that in addition to discharge, rainwash between floods may redistribute sediments from bedrock topographic highs to lower elevation areas, and also highlight the critical role of vegetation colonization in bar stability, and in trapping of additional sediment and organics. These findings challenge the assumptions of preferential deposition on topographic highs that underpin previous analyses of KNP river dynamics, and are synthesized in a new conceptual model that demonstrates how initial bedrock topographic lows become topographic highs (bedrock core‐bars and islands) in the latter stages of sediment accumulation. The model provides particular insight into the development of mixed bedrock‐alluvial anastomosing along the KNP rivers, but similar processes of bar/island development likely occur along numerous other bedrock‐influenced rivers across dryland southern Africa and farther afield

    Superconducting states and depinning transitions of Josephson ladders

    Full text link
    We present analytical and numerical studies of pinned superconducting states of open-ended Josephson ladder arrays, neglecting inductances but taking edge effects into account. Treating the edge effects perturbatively, we find analytical approximations for three of these superconducting states -- the no-vortex, fully-frustrated and single-vortex states -- as functions of the dc bias current II and the frustration ff. Bifurcation theory is used to derive formulas for the depinning currents and critical frustrations at which the superconducting states disappear or lose dynamical stability as II and ff are varied. These results are combined to yield a zero-temperature stability diagram of the system with respect to II and ff. To highlight the effects of the edges, we compare this dynamical stability diagram to the thermodynamic phase diagram for the infinite system where edges have been neglected. We briefly indicate how to extend our methods to include self-inductances.Comment: RevTeX, 22 pages, 17 figures included; Errata added, 1 page, 1 corrected figur

    Physical Electronics

    Get PDF
    Contains reports on three research projects

    Synchronization of Integrate and Fire oscillators with global coupling

    Full text link
    In this article we study the behavior of globally coupled assemblies of a large number of Integrate and Fire oscillators with excitatory pulse-like interactions. On some simple models we show that the additive effects of pulses on the state of Integrate and Fire oscillators are sufficient for the synchronization of the relaxations of all the oscillators. This synchronization occurs in two forms depending on the system: either the oscillators evolve ``en bloc'' at the same phase and therefore relax together or the oscillators do not remain in phase but their relaxations occur always in stable avalanches. We prove that synchronization can occur independently of the convexity or concavity of the oscillators evolution function. Furthermore the presence of disorder, up to some level, is not only compatible with synchronization, but removes some possible degeneracy of identical systems and allows new mechanisms towards this state.Comment: 37 pages, 19 postscript figures, Latex 2
    • 

    corecore