22 research outputs found

    The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis

    Get PDF
    The OP (organophosphate)-degrading enzyme from Agrobacterium radiobacter (OpdA) is a binuclear metallohydrolase able to degrade highly toxic OP pesticides and nerve agents into less or non-toxic compounds. In the present study, the effect of metal ion substitutions and site-directed mutations on the catalytic properties of OpdA are investigated. The study shows the importance of both the metal ion composition and a hydrogenbond network that connects the metal ion centre with the substrate-binding pocket using residues Arg254 and Tyr257 in the mechanism and substrate specificity of this enzyme. For theCo(II) derivative of OpdA two protonation equilibria (pKa1 ∼5; pKa2 ∼10) have been identified as relevant for catalysis, and a terminal hydroxide acts as the likely hydrolysis-initiating nucleophile. In contrast, the Zn(II) and Cd(II) derivatives only have one relevant protonation equilibrium (pKa ∼4–5), and theμOHis the proposed nucleophile. The observed mechanistic flexibility may reconcile contrasting reaction models that have been published previously and may be beneficial for the rapid adaptation of OP-degrading enzymes to changing environmental pressures

    Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    Get PDF
    BACKGROUND Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. FINDINGS A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. CONCLUSION The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism.This work was funded by the Royal Society of Tropical Medicine and Hygiene through a Dennis Burkitt Fellowship to JJM. ARD is supported by the Economic and Social Research Council. JJM is supported by a Wellcome Trust Research Training Fellowship (GR074833MA)

    The bioremediator glycerophosphodiesterase employs a non-processive mechanism for hydrolysis.

    No full text
    Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase that catalyzes the breakdown of a broad range of phosphate ester substrates, and it is of interest for its potential application in the destruction of organophosphate nerve agents and pesticides. The reaction mechanism of GpdQ has been proposed to involve a nucleophilic attack by a terminally bound hydroxide molecule. The hydroxide species bridging the two metal ions is suggested to activate the nucleophile, thus favoring a sequential rather than a processive mechanism of action. Here, the hydrolysis of the two ester bonds in the substrate bis(para-nitrophenyl) phosphate (bpNPP) is probed using 31P NMR. The kinetic rates measured compare well with those determined spectrophotometrically. Furthermore, the data indicate that the diester bonds are cleaved in two separate (non-processive) reactions, indicating that only a single nucleophile (the terminal hydroxide molecule) is likely to be employed as a nucleophile for GpdQ

    Manganese Metalloproteins

    No full text
    While manganese has been successfully exploited as a spectroscopic probe of EPR silent centers (Zn, Ca, Mg) in metalloenzymes, it was only during the last decade that manganese-containing metalloenzymes were investigated in great detail. Indeed, in some biological systems it remains unclear whether iron and/or manganese is required for catalytic competency. Binuclear manganese enzymes are a small group of enzymes that catalyze a variety of chemical reactions and are involved in numerous metabolic functions. In this review the structural and biochemical properties of these enzymes are described. The contributions of electron paramagnetic resonance-related techniques to our understanding of the structure and reactivity of binuclear manganese enzymes are discussed and, where appropriate, supported by data obtained from complementary spectroscopic methods. This article is intended as a guide to illustrate the usefulness of electron paramagnetic resonancerelated techniques in the study of these enzymes

    The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis

    No full text
    The OP (organophosphate)-degrading enzyme from Agrobacterium radiobacter (OpdA) is a binuclear metallohydrolase able to degrade highly toxic OP pesticides and nerve agents into less or non-toxic compounds. In the present study, the effect of metal ion substitutions and site-directed mutations on the catalytic properties of OpdA are investigated. The study shows the importance of both the metal ion composition and a hydrogen-bond network that connects the metal ion centre with the substrate-binding pocket using residues Arg254 and Tyr257 in the mechanism and substrate specificity of this enzyme. For the Co(II) derivative of OpdA two protonation equilibria (pKa1 ∼5; pKa2 ∼10) have been identified as relevant for catalysis, and a terminal hydroxide acts as the likely hydrolysis-initiating nucleophile. In contrast, the Zn(II) and Cd(II) derivatives only have one relevant protonation equilibrium (pKa ∼4-5), and the μOH is the proposed nucleophile. The observed mechanistic flexibility may reconcile contrasting reaction models that have been published previously and may be beneficial for the rapid adaptation of OP-degrading enzymes to changing environmental pressures

    The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis

    No full text
    The OP (organophosphate)-degrading enzyme from Agrobacterium radiobacter (OpdA) is a binuclear metallohydrolase able to degrade highly toxic OP pesticides and nerve agents into less or non-toxic compounds. In the present study, the effect of metal ion substitutions and site-directed mutations on the catalytic properties of OpdA are investigated. The study shows the importance of both the metal ion composition and a hydrogenbond network that connects the metal ion centre with the substrate-binding pocket using residues Arg254 and Tyr257 in the mechanism and substrate specificity of this enzyme. For theCo(II) derivative of OpdA two protonation equilibria (pKa1 ∼5; pKa2 ∼10) have been identified as relevant for catalysis, and a terminal hydroxide acts as the likely hydrolysis-initiating nucleophile. In contrast, the Zn(II) and Cd(II) derivatives only have one relevant protonation equilibrium (pKa ∼4–5), and theμOHis the proposed nucleophile. The observed mechanistic flexibility may reconcile contrasting reaction models that have been published previously and may be beneficial for the rapid adaptation of OP-degrading enzymes to changing environmental pressures

    The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis

    No full text
    The OP (organophosphate)-degrading enzyme from Agrobacterium radiobacter (OpdA) is a binuclear metallohydrolase able to degrade highly toxic OP pesticides and nerve agents into less or non-toxic compounds. In the present study, the effect of metal ion substitutions and site-directed mutations on the catalytic properties of OpdA are investigated. The study shows the importance of both the metal ion composition and a hydrogenbond network that connects the metal ion centre with the substrate-binding pocket using residues Arg254 and Tyr257 in the mechanism and substrate specificity of this enzyme. For theCo(II) derivative of OpdA two protonation equilibria (pKa1 ∼5; pKa2 ∼10) have been identified as relevant for catalysis, and a terminal hydroxide acts as the likely hydrolysis-initiating nucleophile. In contrast, the Zn(II) and Cd(II) derivatives only have one relevant protonation equilibrium (pKa ∼4–5), and theμOHis the proposed nucleophile. The observed mechanistic flexibility may reconcile contrasting reaction models that have been published previously and may be beneficial for the rapid adaptation of OP-degrading enzymes to changing environmental pressures

    The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis

    Get PDF
    The OP (organophosphate)-degrading enzyme from Agrobacterium radiobacter (OpdA) is a binuclear metallohydrolase able to degrade highly toxic OP pesticides and nerve agents into less or non-toxic compounds. In the present study, the effect of metal ion substitutions and site-directed mutations on the catalytic properties of OpdA are investigated. The study shows the importance of both the metal ion composition and a hydrogenbond network that connects the metal ion centre with the substrate-binding pocket using residues Arg254 and Tyr257 in the mechanism and substrate specificity of this enzyme. For theCo(II) derivative of OpdA two protonation equilibria (pKa1 ∼5; pKa2 ∼10) have been identified as relevant for catalysis, and a terminal hydroxide acts as the likely hydrolysis-initiating nucleophile. In contrast, the Zn(II) and Cd(II) derivatives only have one relevant protonation equilibrium (pKa ∼4–5), and theμOHis the proposed nucleophile. The observed mechanistic flexibility may reconcile contrasting reaction models that have been published previously and may be beneficial for the rapid adaptation of OP-degrading enzymes to changing environmental pressures

    The Jahn-Teller Effect in Cu(II) Doped MgO

    No full text
    The Cu(II) doped MgO system is known to display features indicating behavior intermediate between static and dynamic Jahn-Teller effects at low temperature. The system is interesting as diere is a low barrier between equivalent Jahn-Teller distortions i
    corecore