The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis

Abstract

The OP (organophosphate)-degrading enzyme from Agrobacterium radiobacter (OpdA) is a binuclear metallohydrolase able to degrade highly toxic OP pesticides and nerve agents into less or non-toxic compounds. In the present study, the effect of metal ion substitutions and site-directed mutations on the catalytic properties of OpdA are investigated. The study shows the importance of both the metal ion composition and a hydrogenbond network that connects the metal ion centre with the substrate-binding pocket using residues Arg254 and Tyr257 in the mechanism and substrate specificity of this enzyme. For theCo(II) derivative of OpdA two protonation equilibria (pKa1 ∼5; pKa2 ∼10) have been identified as relevant for catalysis, and a terminal hydroxide acts as the likely hydrolysis-initiating nucleophile. In contrast, the Zn(II) and Cd(II) derivatives only have one relevant protonation equilibrium (pKa ∼4–5), and theμOHis the proposed nucleophile. The observed mechanistic flexibility may reconcile contrasting reaction models that have been published previously and may be beneficial for the rapid adaptation of OP-degrading enzymes to changing environmental pressures

    Similar works

    Full text

    thumbnail-image