17 research outputs found

    Neuroendoscopic Resection of Intraventricular Tumors and Cysts through a Working Channel with a Variable Aspiration Tissue Resector: A Feasibility and Safety Study

    Get PDF
    Pure neuroendoscopic resection of intraventricular lesions through a burr hole is limited by the instrumentation that can be used with a working channel endoscope. We describe a safety and feasibility study of a variable aspiration tissue resector, for the resection of a variety of intraventricular lesions. Our initial experience using the variable aspiration tissue resector involved 16 patients with a variety of intraventricular tumors or cysts. Nine patients (56%) presented with obstructive hydrocephalus. Patient ages ranged from 20 to 88 years (mean 44.2). All patients were operated on through a frontal burr hole, using a working channel endoscope. A total of 4 tumors were resected in a gross total fashion and the remaining intraventricular lesions were subtotally resected. Fifteen of 16 patients had relief of their preoperative symptoms. The 9 patients who presented with obstructive hydrocephalus had restoration of cerebrospinal fluid flow though one required a ventriculoperitoneal shunt. Three patients required repeat endoscopic resections. Use of a variable aspiration tissue resector provides the ability to resect a variety of intraventricular lesions in a safe, controlled manner through a working channel endoscope. Larger intraventricular tumors continue to pose a challenge for complete removal of intraventricular lesions

    Quantitative Tumor Segmentation for Evaluation of Extent of Glioblastoma Resection to Facilitate Multisite Clinical Trials

    Get PDF
    AbstractStandard-of-care therapy for glioblastomas, the most common and aggressive primary adult brain neoplasm, is maximal safe resection, followed by radiation and chemotherapy. Because maximizing resection may be beneficial for these patients, improving tumor extent of resection (EOR) with methods such as intraoperative 5-aminolevulinic acid fluorescence-guided surgery (FGS) is currently under evaluation. However, it is difficult to reproducibly judge EOR in these studies due to the lack of reliable tumor segmentation methods, especially for postoperative magnetic resonance imaging (MRI) scans. Therefore, a reliable, easily distributable segmentation method is needed to permit valid comparison, especially across multiple sites. We report a segmentation method that combines versatile region-of-interest blob generation with automated clustering methods. We applied this to glioblastoma cases undergoing FGS and matched controls to illustrate the method's reliability and accuracy. Agreement and interrater variability between segmentations were assessed using the concordance correlation coefficient, and spatial accuracy was determined using the Dice similarity index and mean Euclidean distance. Fuzzy C-means clustering with three classes was the best performing method, generating volumes with high agreement with manual contouring and high interrater agreement preoperatively and postoperatively. The proposed segmentation method allows tumor volume measurements of contrast-enhanced T1-weighted images in the unbiased, reproducible fashion necessary for quantifying EOR in multicenter trials
    corecore