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Abstract
Standard-of-care therapy for glioblastomas, the most common and aggressive primary adult brain neoplasm, is
maximal safe resection, followed by radiation and chemotherapy. Because maximizing resection may be beneficial
for these patients, improving tumor extent of resection (EOR) with methods such as intraoperative 5-aminolevulinic
acid fluorescence-guided surgery (FGS) is currently under evaluation. However, it is difficult to reproducibly judge
EOR in these studies due to the lack of reliable tumor segmentation methods, especially for postoperative
magnetic resonance imaging (MRI) scans. Therefore, a reliable, easily distributable segmentation method is needed
to permit valid comparison, especially across multiple sites. We report a segmentation method that combines
versatile region-of-interest blob generation with automated clustering methods. We applied this to glioblastoma
cases undergoing FGS and matched controls to illustrate the method’s reliability and accuracy. Agreement and
interrater variability between segmentations were assessed using the concordance correlation coefficient, and
spatial accuracy was determined using the Dice similarity index and mean Euclidean distance. Fuzzy C-means
clustering with three classes was the best performing method, generating volumes with high agreement with
manual contouring and high interrater agreement preoperatively and postoperatively. The proposed segmentation
method allows tumor volume measurements of contrast-enhanced T 1-weighted images in the unbiased, repro-
ducible fashion necessary for quantifying EOR in multicenter trials.
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Introduction
Glioblastoma is the most common and most aggressive primary brain
neoplasm in adults. Current imaging evaluation for glioblastoma
management relies heavily on the subjective analysis of T 1-weighted
(T 1W) magnetic resonance images [1,2]. Simple unidimensional and
bidimensional measurements of T 1W contrast-enhancing regions of
the tumor are the crux of response criteria in clinical trials, although
limitations of such methods have been reviewed previously in detail,
particularly with regards to postsurgical tumor analysis [3–5]. For exam-
ple, these linear methods of measurement are not well suited for
evaluating curvilinear tumor remnants such as those along the edges

Address all correspondence to: Chad A. Holder, MD or Hyunsuk Shim, PhD, Winship
Cancer Institute, C5018, 1365C Clifton Rd, Atlanta, GA 30322.
E-mail: cholder@emory.edu, hshim@emory.edu
1Work was supported by NIH U01CA172027 (to H.S.) and a predoctoral fellowship
T32GM008602 (to J.S.C.).
2This article refers to supplementary materials, which are designated by Tables W1 to
W6 and Figures W1 to W3 and are available online at www.transonc.com.
Received 12 December 2013; Revised 15 January 2014; Accepted 16 January 2014

Copyright © 2014 Neoplasia Press, Inc. All rights reserved 1944-7124/14/$25.00
DOI 10.1593/tlo.13835

www.transonc.com

Trans la t iona l Onco logy Volume 7 Number 1 February 2014 pp. 40–47 40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82354625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of a postoperative resection cavity. In addition, they may not accurately
account for the presence of T 1-hyperintense blood products (methe-
moglobin) in and around the resection site, which can be confused with
enhancing tumor tissue. Although not currently the standard of care,
these morphologic nuances can be accounted for by a neuroradiologist
with 3-dimensional (3D) volume–rendering software that allows for the
manual tracing of images, or “contouring”; however, this process is time
consuming, cost prohibitive, and suffers from limited reproducibility
[6–8]. To overcome these limitations, many sophisticated algorithms
have been developed for the automated segmentation of multiple
images; however, few have achieved the simplicity, speed, accuracy,
and limited user interaction required for routine clinical use [9–12].
Moreover, many of the software environments in which these tech-
niques have been designed are not standardized for clinical use, com-
pounding the challenge of their implementation in clinical trials [13].
Due to the inadequacies surrounding the manual and automated seg-
mentation methods that are currently available, it would be desirable to
develop a hybrid method of tumor segmentation that is adaptable to
various clinically available tools for the reproducible segmentation of
contrast-enhancing tumors in multicenter neurosurgical trials.
Coupling a flexible image sampling method, such as region-of-

interest blob (ROI blob) generation, to an unsupervised statistical
classification algorithm appears to exhibit the clinically desired balance
for semiautomated tumor segmentation. Two well-established classifi-
cation schemes that can be adapted for unsupervised image segmen-
tation are Otsu’s multilevel thresholding (Otsu) and Fuzzy C-means
clustering (Fuzzy) [14–16]. The Otsu method uses discriminant statis-
tical analysis for image histogram intensity thresholding, exhaustively
determining intensity thresholds (between tissue classes) that minimize
the intraclass variance among each class of voxels [17,18]. The division
algorithmmodifies each threshold by fitting the histogram with a num-
ber of probability curves and iteratively computing the variances and
positions of each until curve overlap is minimized. The result is a 3D
map with discrete classes containing voxels that exhibit similar signal
intensities. When this method is used to divide a contrast-enhanced,
T 1W ROI blob into three or four classes, the resultant map differenti-
ates strongly and weakly enhancing regions from surrounding tissues.
The Fuzzy algorithm similarly computes cluster centroids and

clusters voxels on the basis of intraclass/interclass signal intensity vari-
ance. Unlike Otsu, which classifies voxels into discrete clusters (hard
clustering), Fuzzy treats each data element as a member of all clusters
with an associated level of membership in each, which can be expressed
as a continuous value (soft clustering) [19–21]. Therefore, Fuzzy classi-
fication results in a set of maps, each representing a class with a similar
signal intensity range, where each voxel’s value indicates the degree of
its residence (expressed as a probability) in that class. Fuzzy has been
investigated for tumor segmentation using multidimensional feature
vectors for the last couple of decades with varying degrees of success
[22–24]. However, to our knowledge, no investigation has been done
to evaluate its performance coupled to ROI blob analysis.
In this study, we develop and validate a flexible semiautomated

tumor segmentation tool for the assessment of preoperative and
postoperative glioblastoma tumor burden on the basis of contrast-
enhanced T 1W images. As proof of principle, we applied ROI
blob/voxel classification methods (Otsu and Fuzzy) to patients
with glioblastoma receiving fluorescence-guided surgery (FGS) with
5-aminolevulinic acid (5-ALA) and retrospectively matched control
patients to: 1) illustrate the reliability and accuracy of the segmen-
tation method and 2) corroborate the interim extent-of-resection

(EOR) findings of the ongoing phase II 5-ALA clinical trial [25–31].
The desired outcome is to develop a reliable and user-friendly segmen-
tation method for the generation of T 1W contrast-enhancing tumor
volumes that may be used in multicenter neurosurgical clinical trials
in patients with glioblastoma.

Methods

Preoperative and Postoperative Imaging
Per the institutional review board–approved 5-ALA phase II

clinical trial, high-resolution, 3D preoperative MR images, including
1mm3T 1Wmagnetization–prepared rapid gradient–echo (MP-RAGE)
images (repetition time/echo time = 1900/3.52, 256 × 256 matrix,
flip angle = 9°, before and after IV administration of gadolinium-based
contrast medium) generated 48 hours or less before surgery for 5-ALA
patients were analyzed. Postoperative images consisted of T 1W MP-
RAGE and/or low-resolution (1 × 1 × 5 mm, repetition time/echo
time = 450-2000/9.2-20, 256 × 224-177 matrix, flip angle = 90°-
130°) images acquired before and after the IV administration of
gadolinium-based contrast medium postoperatively, within 24 hours
of surgery. Control patients matched for glioblastoma tumor size
and location were retrospectively selected from an Emory University
Department of RadiationOncology,WinshipCancer Institute (Atlanta,
GA) database for case comparison. These preoperative and postoperative
MR images exhibited similar characteristics in terms of the afore-
mentioned pulse sequence parameters and the timing of the scans rela-
tive to surgery (24-48 hours postsurgery).

Image Analysis
The 510(k), Food and Drug Administration (FDA)-cleared medical

imaging platform VelocityAI (Velocity Medical Solutions, Atlanta, GA)
was used to outline tumors manually and generate ROI blobs using
preoperative and postoperative T 1W scans with and without IV con-
trast. As per a European randomized multicenter FGS trial, complete
tumor resection was defined as ≤0.175 cm3 of residual contrast-
enhancing tumor after surgery using volumetric assessment [26]. The
conventional imaging definition of gross total resection (residual contrast-
enhancing tumor < 1 cm3) was also evaluated.

Computer-Assisted Manual Contouring
Preoperative and postoperative tumor volumes were manually

delineated using VelocityAI by an experienced board-certified neuro-
radiologist (C.A.H.). Enhancing-tumor control points were initiated,
tumor regions were interactively grown or contracted in two dimen-
sions, and post hoc edits were made as needed. This manual method
of contouring is commonplace in the generation of tumor volumes
for both radiotherapy planning and validation of simulated segmen-
tations [10,32,33].

Semiautomated Segmentation Method
Preoperative tumor ROI blobs for Otsu and Fuzzy processing

were generated in VelocityAI by coarsely contouring around enhanc-
ing tumor on T 1W images, including the first and last images on
which the tumor is visible, and every sixth axial slice in between and
then automatically interpolating to a cohesive 3D structure (Figure 1, A
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and B). As few as two slices (at the superiormost and inferiormost
poles of the tumor, respectively) and as many as every slice containing
tumor can be contoured and interpolated to give a cohesive ROI blob;
however, on the basis of practical clinical experience, we have found
that contouring every sixth slice gives ROI blobs that adequately
encompass even the most complex contrast-enhancing brain tumors
within a reasonable time frame. This type of initialization can be
done with any volume-rendering platform capable of exporting Digital
Imaging and Communication in Medicine blobs, making implemen-
tation of the method simple at multiple sites.
ROI blobs and parent images were then exported and processed

offline using C++-generated Otsu and Fuzzy algorithms. Algorithms
used standard code from the Insight Segmentation and Registration
Toolkit and were compiled as a command-line executable taking as
input Digital Imaging and Communication in Medicine images
(ROI blobs) and outputting segmentation masks in the same format.
Algorithm preprocessing including fade correction for signal differ-
ences was due to magnetic field gradients in a bias-field estimation
manner. No smoothing functions were used, ɛ was set at 0.01, and
iterations were set at 30 as these were found to be optimal. For these
algorithms, the number of tissue classes is a definable parameter, and
any number of strata represented by a positive integer can be gener-
ated; however, stratification of voxels into more than five classes is of
limited utility, as discrete tissue types (such as contrast-enhancing tu-
mor rims) become erroneously subcategorized. Therefore, only maps
stratified into three or four classes were generated with the naming
convention as follows: classification of four classes using the Fuzzy
and Otsu algorithms are named Fuzzy4 and Otsu4, respectively,
and classification of three classes using the Fuzzy and Otsu algo-
rithms are named Fuzzy3 and Otsu3, respectively. It should be noted
that Otsu3 was abandoned in the preliminary analysis as resultant
maps did not differentiate parenchyma from enhancing tissue and
therefore is not reported herein. These maps were then imported into
VelocityAI for display and evaluation.
To produce postresection tumor volumes, image difference maps

(subtraction images) were generated by subtracting white matter–
normalized, spatially coregistered precontrast T 1W images from
postcontrast T 1W images. This was done to correct for the presence
of T 1-hyperintense postoperative blood products and cavity deforma-
tion. Normalization of postoperative images included fade correction

and precontrast image signal scaling with postcontrast/precontrast
intensity ratio. These normalized subtraction images were then used
to draw coarse ROI blobs and generate segmentation maps using both
algorithms outlined above (Figure 2, C and D). This was done for all
preoperative and postoperative images by two research specialists
(nonradiologists), reader 1 (J.S.C.) and reader 2 (J.A.), independently
and many days apart (>20 days).

Statistical Methods
Statistical analyses were performed with the Statistical Analysis

System (version 9; SAS Institute, Cary, NC); all were two sided,
and statistical significance was set at P < .05. The concordance cor-
relation coefficient (CCC), a reproducibility index evaluating the
agreement of two readings by measuring their combined variation
from the line y = x, was used to measure the agreement of tumor
volumes generated by readers 1 and 2 using Otsu4, Fuzzy4, and
Fuzzy3 with those generated manually by the neuroradiologist
[34–36]. Spatial agreement between each segmentation and the
manual contour were evaluated using the Dice similarity index
(Dice) and the mean Euclidean distance (MED)—volume overlap
and surface distance metrics, respectively—for each pair, and means
between readers were subjected to analysis of variance with Tukey's
correction [37,38]. It is generally accepted that Dice values > 0.70
represent a significant overlap in structures, with values > 0.80 con-
sidered to be “good” and values > 0.90 considered to be “excellent.”
For surface distance, a value of 0 is an ideal MED; however, for prac-
tical purposes, a mean distance of ∼1 mm is considered very good
(∼1 voxel width error in MP-RAGE images). Interrater agreement,
in terms of CCC, was evaluated for the method that had the highest
agreement with manual contouring as a metric of interrater variabil-
ity. Wilcoxon signed rank test and χ2/Fisher exact analysis were used
to compare manually generated and algorithm-generated volume
outcomes (i.e., residual tumor volume and EOR) for the 16 5-ALA:
control pairs in the 37 case samples. Performance metrics (sensitivity,
specificity, positive predictive value, and negative predictive value) were
computed using a two-by-two contingency table for postresection
tumor volume cutoffs of ≤1 cm3 and ≤0.175 cm3, with manual con-
touring by an experienced neuroradiologist as the “ground truth” for
these 16 ALA:control pairs [39].

Figure 1. Preoperative (A and B) and postoperative (C and D) ROI blobs [2-dimensional (2D) and 3D] generated by coarse contouring.
Subtraction image (C) accounts for blood product accumulation in resection cavity (dark region). Resultant 2D and 3D tumor segmentations
for preoperative (E and F) and postoperative (G and H) contrast-enhanced T 1W images using Fuzzy3 algorithm.
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Results

Fuzzy3 Algorithm Shows Greatest Volume Agreement with
Manual Contouring
A total of 37 cases were accrued for validation of the afore-

mentioned segmentation methods, 16 of which had received FGS
in the 5-ALA trial and 21 retrospective controls. Examples of pre-
operative and postoperative ROI blobs and segmented tumor volumes
generated using Fuzzy3 are shown in Figure 1, A to D and E to H ,
respectively, and raw volume data for all cases and each method are
included in Tables W1 and W2. The agreement for each method
with manual contouring preoperatively and postoperatively is shown
with CCCs, SEM, and 95% confidence intervals (CIs) in Figure 2.
A complimentary evaluation of agreement using the method com-
parison analysis outlined by Bland and Altman can be found in
Table W3 and Figures W1–W3 [40]. The extra five cases are included
with 5-ALA cases for CCC, method comparison, and spatial analysis
in Tables W1–W6, as well as Figures 2–4 and W1 to W3. Although
differences in agreement between Fuzzy4 and Otsu4 were subtle pre-
operatively, greater differences became apparent postoperatively, with
CCCs for Fuzzy4 approaching unity, whereas, those for the Otsu
method remain below 0.84. This trend held true for both readers pre-

operatively and postoperatively, suggesting a reproducible finding
attributable to the method. Moreover, preoperative and postoperative
differences in interreader mean CCC between Otsu4 and Fuzzy4
were found to be statistically significant at P = .027 (Table W4)
and P = .002 (Table W5), respectively.
On the basis of its near-perfect agreement with manual contouring

both preoperatively and postoperatively, Fuzzy clustering was selected
as the most promising segmentation method, and another simulation
using only three classes was then investigated in an attempt to opti-
mize the method. With the use of only three classes, Fuzzy3 segmen-
tation volumes (Figure 2, row 3) exhibited higher agreement with
manual contouring, in terms of CCC, than Fuzzy4 segmentations, both
preoperatively and postoperatively. The differences in interrater mean
CCCs were found to be statistically significant in the preoperative and
postoperative settings as well (P = .025 in Table W4 and P = .045 in
Table W5, respectively).

Fuzzy3 Algorithm Shows Greatest Spatial Agreement with
Manual Contouring
To evaluate spatial overlap of algorithm-generated tumor segmen-

tations versus manual contours, Dice and MED metrics were used

Figure 2. Preoperative and postoperative manual tumor contour volume versus semiautomated segmentation (Otsu4, Fuzzy4, or Fuzzy3
from top to bottom) by two separate readers. CCC, concordance correlation coefficient ± SEM; CI, confidence interval.
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(Figure 3A). Mean Dice and MED values with SEMs and 95% CIs
for Otsu and Fuzzy methods versus manual contouring were com-
puted for subjects preoperatively and postoperatively and reported
in Figure 3B. Fuzzy4 again outperformed Otsu4, in terms of Dice
and MED values, exhibiting a significantly higher mean Dice value
and significantly lower MED preoperatively and postoperatively (P <
.05). Subsequent Fuzzy3 simulations produced segmentations that
also differed significantly in terms of Dice and MED from Otsu4;
however, no significant difference in these values was found between
segmentations produced using Fuzzy3 and Fuzzy4. Moreover, pre-
operative intrarater variability, as measured by the coefficient of
variation for Dice and MED metrics, was found to be increased in
Otsu4, exhibiting values of 0.156 and 1.35, respectively, relative to
those for Fuzzy3 and Fuzzy4 that were similar (0.070/1.27 and
0.083/1.38, respectively).

Fuzzy3 Algorithm Exhibits Exceptionally High
Interrater Agreement
Fuzzy3 outperformed both Otsu4 and Fuzzy4 in all measured

parameters (CCC, Dice, and MED), although only nonstatistically
significant trends were found versus Fuzzy4 in regards to spatial
agreement with manual contouring. This, along with anecdotal
evidence that Fuzzy4 requires more computation time than Fuzzy3
(as more centroids must be evaluated and more thresholds opti-
mized), led to the selection of the Fuzzy3 method as the best candi-
date for interrater reproducibility analysis. The CCC, SEM, and
95% CIs between separate readers using Fuzzy3 for tumor volume
generation are reported, along with their agreement plots, in Figure 4

for subjects preoperatively and postoperatively, as a measure of inter-
rater agreement. The use of Fuzzy3 for tumor segmentation resulted
in interrater CCCs for preoperative and postoperative tumor volumes
that approached unity (0.990 and 0.983, respectively), with narrow
CIs (0.981-0.995 and 0.981-0.995, respectively). This was particu-
larly noteworthy postoperatively, as accurate postsurgical residual
tumor measurements are typically difficult to determine, even using
the most time-consuming manual segmentation methods, due to
their complex morphology and the presence of T 1-hyperintense
blood products.

Fuzzy3 Algorithm Performs Well per Diagnostic
Performance Metrics
Chi-square comparison of Fuzzy3-generated postoperative tumor

volumes versusmanually contoured tumor volumes by an experienced
neuroradiologist (ground truth) for 16 case-control pairs showed a
sensitivity of 0.929 (95% CI = 0.661-0.998) and specificity of 1.0
(95% CI = 0.815-1.0) at a volume cutoff of ≤1.0 cm3. Accuracy,
positive predictive value, and negative predictive value at ≤1.0 cm3

were 0.969, 1.0 (95% CI = 0.753-1.00), and 0.947 (95% CI =
0.740-0.999), respectively. At a postoperative tumor volume cutoff
of ≤0.175 cm3, sensitivity and specificity for Fuzzy3 were found to
be 0.667 (95% CI = 0.223-0.957) and 1.0 (95% CI = 0.868-1.000),
respectively, with accuracy, positive predictive value, and negativeFigure 3. Two-dimensional illustration depicting impact of manual

and segmented structure overlap on Dice and MED (A) along with
mean preoperative and postoperative Dice and MED values with
SEM and 95% confidence for Otsu and Fuzzy methods versus
manual contouring (B). *P < .05, **P < .05, +P < .05, ++P < .05,
°P < .05, °°P < .05, aP < .05, and aaP < .05. CI, confidence interval.

Figure 4. Preoperative (top) andpostoperative (bottom) tumor volumes
were generated using Fuzzy3 by reader 1 versus reader 2. CCC, con-
cordance correlation coefficient ± SEM; CI, confidence interval.
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predictive value of 0.938, 1.0 (95% CI = 0.398-0.1.0), and 0.929
(95% CI = 0.765-0.991). The mean EOR, as computed using Fuzzy3
volumes, was found to be 94.5 ± 4.8% for the ALA patients and 86.5 ±
11.5% for the controls. Furthermore, no statistically significant differ-
ence between EOR determined using Fuzzy3 or manual contouring
was found with P = .313 for ALA patients (manual = 95.0 ± 1.2%)
and P = .115 for control patients (manual EOR = 86.5 ± 3.0%).

Discussion
In any clinical trial analyzing surgical resection, a major hindrance in
image analysis must be addressed: the unbiased and reproducible
measurement of preoperative and postoperative tumor volumes. We
believe that Fuzzy coupled to ROI blob initialization offers a feasible
solution to this hindrance. Fuzzy3 performs as well as other complex
semiautomated and fully automated methods proposed in recent years.
Fuzzy3’s preoperative Dice values (mean = 0.92) lie well within the
range of similar values generated using edge- and region-based segmen-
tation algorithms (0.72-0.98), including content-based active contours,
fuzzy connectedness, and fluid vector flow methods [41–45]. This
holds true for comparison of Fuzzy3 to other classification/clustering
methods—using neighborhood regularization, deformable models,
and/or global constraints based on atlases—that exhibit Dice coeffi-
cients ranging from 0.40 to 0.90 [10]. These values include those
generated by newly developed methods using conditional Markov
fields, support vector machine classification, decision forests, and
expectation-maximization + Markov random field methods [46–49].
Moreover, MED observed using Fuzzy3 (mean = 0.142 mm) preopera-
tively exhibited similar comparability to other segmentation studies
using this metric (0.73-4.5 mm) [50–53]. Dice and MED values for
postoperative segmentations barely failed to reach the generally known
thresholds of reasonable segmentation (>0.70 and 1 mm, respectively)
but still fell within the range of those reported in other studies. These
lower scores are likely due to the large volume contribution of sur-
rounding blood vessels to end segmentation. This is currently being
addressed with postprocessing methods, including the use of shape
identifiers to find and remove blood vessels in T 1W images.
Computer-assisted manual contouring decreases the interrater and

intrarater variability of volume generation in multiple anatomic regions
(i.e., cervix, lung, brain, pancreas, and liver); however, this requires a
great deal of time and effort [8,13,54–56]. Sorensen et al. found that
manual contouring of tumor volumes resulted in an average completion
time of approximately 20 minutes per tumor, a time requirement that
clearly limits its routine use [8]. Ongoing work shows that, when a
group of cases (tumor volumes = 8.0-100.0 cm3) is segmented by a
research specialist using Fuzzy3 and a neuroradiologist using computer-
assisted manual contouring, Fuzzy3 generates segmentations in sig-
nificantly less time (186.7 ± 35.3 seconds vs 378.5 ± 49.9 seconds;
P < .001). Furthermore, whereas the entirety of the manual contouring
time consists of user interaction, this only accounts for an average of
86.4 ± 34.4 seconds (<50% of total time) using Fuzzy3, as the most
time-intensive component of the Fuzzy3 segmentation is computation.
Furthermore, the Fuzzy3 and manual segmentations were equally
accurate, as no statistically significant difference was found in terms of
the Dice means (Dice = 0.943 ± 0.018 and 0.945 ± 0.015, respectively;
P = .741). Lastly, Fuzzy3 can be used for batch processing, allowing
multiple tumors to be segmented sequentially and simultaneously—
an advantageous quality when data from multiple centers are analyzed
at a single site. The user (most likely an imaging technician) need not
laboriously contour the intricate morphology of each tumor; he or she

need only draw a simple coarse blob around the tumor for each patient
and process multiple cases in a single batch. The algorithm will fill
in the fine morphologic details of the tumor for the neuroradiologist
to confirm afterward. The proposed semiautomated segmentation
method delineates the intricacies of tumor morphology in a manner
comparable to manual contouring with high fidelity but in less time
and with less user interaction and, consequently, with less potential
for user-introduced bias.
Semiautomated segmentation methods have been developed in an

attempt to combine the high-level visual processing and specialized
knowledge exhibited by humans with the objectivity of computers;
however, most of these methods remain restricted to their individual
development sites, having not gained widespread acceptance [24,
57–61]. This is likely due to an absence of segmentation algorithm/
software transparency, the technical complexity of the algorithms,
and the difficulty with which input data are generated. For example,
artificial neural networks are capable of identifying very complex
voxel-based dependencies within large 3D magnetic resonance imaging
(MRI) data sets, offering clear advantages over less sophisticated meth-
ods [44]. However, implementing these processes is not trivial, as the
algorithmmust be trained, requiring a slow, tedious learning phase, and
segmentation trouble shooting requires a proficiency in data abstrac-
tion processes, such as hierarchical self-organized mapping [9,62].
Conversely, ROI-guided semiautomated segmentation methods using
algorithms similar to those used here have been shown to quantify
enhancing tumor reproducibly in the presence of resection cavity col-
lapse and nonneoplastic enhancing tissues in less time than manual
contouring, lending credence to the standardization and use of similar
methods in neurosurgical trials [63–65].
Precision in image registration is crucial to postoperative tumor

segmentation, as evaluating the complex morphology of residual tumor
requires the ability to differentiate residual enhancing tumor tissue
fromT 1-hyperintense blood products (methemoglobin), nonneoplastic
enhancing structures, such as normal blood vessels, and parenchyma in
the presence of an often deformed resection cavity. When the proposed
algorithms are applied to ROI blobs that sample image difference
maps (subtraction images), misregistration of the resection cavity
and surrounding tissues may result in misclassification of voxels. For
example, if voxels containing postsurgical blood products that are
hyperintense on T 1W images are slightly misregistered, these voxels
may subsequently be subtracted from voxels containing enhancing
tumor, resulting in a lower residual tumor volume. As the current
work used only rigid image registration algorithms for the fusion
of precontrast and postcontrast images, the use of more sophisticated
registration methods, including deformable registration algorithms,
such asmultiresolutionmodified basis spline ormultimodalityDemons,
may prove to be advantageous. Due to the low error of VelocityAI’s
deformable registration algorithms, as shown by Kirby et al., a sample
of cases with subcubic centimeter residual tumor volumes were seg-
mented using Fuzzy3 after both rigid and B-spline deformable image
registration to investigate the impact of registration on algorithm per-
formance [66]. Although no significant difference was found, a trend
in both MED and mean percentage of volume error for rigid and
deformable segmentation (1.61 ± 0.73 mm/50.7 ± 35.3% and 0.89 ±
0.64 mm/47.6 ± 37.3%, respectively) suggests that deformable regis-
tration may increase the accuracy of postoperative tumor segmentation
and lends credence to its use in future studies.
Although the Fuzzy3 method described herein exhibited high

agreement and reproducibility for the systematic determination of
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contrast-enhancing tumor volumes, it exhibited some weaknesses
common to intensity histogram thresholding. As the threshold be-
tween classes/clusters is determined solely by the intensity of the
voxels within the image histogram, other strongly enhancing, non-
neoplastic tissues or high-intensity noise may be misclassified as
contrast-enhancing tumor. Although this is a significant problem
when using global thresholding techniques, it is less of an issue when
using local thresholding, because generating versatile ROI blobs that
exclude obviously nonneoplastic enhancing tissues (dura, blood
vessels, and other examples) can mitigate segmentation errors. Further-
more, these regions may be accounted for by the classification algo-
rithms or simple postprocessing procedures. The ROI selection and
postprocessing techniques are more systematic, more reproducible,
and more easily standardized than manual contouring and should be
considered as important components of tumor segmentation using this
methodology. In addition, in this study, these algorithms were applied
to a population of MR images with variable acquisition parameters and
spatial resolutions. Ideally, in future work, only high-resolution 3D
images (i.e., MP-RAGE) would be acquired and analyzed, as this de-
creases misclassification due to partial volume effects. Furthermore, as
deformable registration seems to be favorable, acquiring high-resolution
images is important, as registration performance is inversely proportional
to image spatial resolution [67].
The proposed method Fuzzy3 overcomes many of the perceived

pitfalls of manual and other semiautomated segmentation methods
by coupling a flexible shape of blob generation method with simple,
local histogram thresholding/clustering. The proposed algorithm allows
for significant control of segmentation parameters, including the selec-
tion of pertinent data for analysis (i.e., ROI blob) and the desired num-
ber of clusters to be classified, while maintaining an intuitive workflow.
Moreover, Fuzzy3 is easily integrated with volume-rendering software
that is currently being used for clinical purposes, such as radiation
therapy planning, thereby expanding the potential for implementation
across multiple sites. As such, Fuzzy3 should be considered for the
generation of preoperative and postoperative tumor volumes for
EOR analysis in multicenter trials for glioblastoma (or other tumors).
Future directions concerning this method consist of addressing the
aforementioned drawbacks of intensity histogram thresholding, further
automating and standardizing the method, particularly in regard to
ROI blob generation and postprocessing procedures, and further inves-
tigating the effect of deformable registration and spatial resolution on
segmentation accuracy.
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Table W1. Preoperative Tumor Volumes Generated Using Manual, Otsu, and Fuzzy Methods.

Study ID Contrast-Enhancing Tumor Volume (cm3)

Manual Reader 1 Otsu4 Reader 2 Otsu4 Reader 1 Fuzzy3 Reader 2 Fuzzy3 Reader 1 Fuzzy4 Reader 2 Fuzzy4

Case 1 3.59 2.41 6.10 3.58 3.51 3.547 3.547
Case 2 83.98 82.08 83.21 90.36 86.15 96.88 88.83
Case 3 22.36 23.23 27.69 22.47 22.64 22.56 21.14
Case 4 41.81 48.45 47.05 41.82 41.64 39.75 39.75
Case 5 8.38 9.20 8.72 8.49 8.01 8.25 8.32
Case 6 42.73 47.31 44.71 42.12 45.09 43.89 37.23
Case 7 11.94 15.24 12.77 12.72 10.85 12.05 10.45
Case 8 51.19 61.85 50.14 50.81 48.74 51.41 50.90
Case 9 4.15 6.59 3.68 4.38 3.34 4.02 3.61
Case 10 15.95 15.77 6.91 15.73 15.17 16.27 15.69
Case 11 4.80 4.87 4.65 4.87 4.88 5.07 4.16
Case 12 76.19 88.52 77.80 80.56 77.82 76.80 75.42
Case 13 66.75 89.27 68.63 66.30 67.62 69.69 65.81
Case 14 4.13 3.31 3.94 4.17 4.05 3.98 4.04
Case 15 53.34 51.98 50.44 52.94 52.9 53.09 57.10
Case 16 18.23 16.43 19.99 18.14 18.03 18.42 16.35
Case 17 13.97 14.54 15.16 14.00 14.49 13.45 14.07
Case 18 54.13 61.69 52.58 49.30 52.01 52.45 51.18
Case 19 10.92 7.24 16.30 10.85 11.10 11.02 11.60
Case 20 20.05 14.69 34.83 20.82 21.31 19.44 19.03
Case 21 30.94 31.03 31.11 32.75 28.95 31.46 30.65
Case 22 35.72 40.71 42.84 36.35 33.79 36.65 37.51
Case 23 54.41 65.54 59.19 54.88 55.74 61.82 60.76
Case 24 89.40 126.8 84.66 92.59 89.80 87.98 95.39
Case 25 3.92 4.19 9.30 3.60 3.67 3.66 3.39
Case 26 16.23 23.51 15.84 16.38 15.14 17.29 15.47
Case 27 29.66 32.50 32.64 29.98 30.03 29.54 29.11
Case 28 101.75 121.36 112.38 112.97 95.59 106.56 78.63
Case 29 65.59 84.86 45.88 65.10 64.63 65.51 67.64
Case 30 23.88 22.29 23.16 23.82 23.38 24.09 24.58
Case 31 33.40 30.77 31.17 33.11 33.89 33.05 30.63
Case 32 54.60 53.62 52.83 54.86 54.37 53.95 53.76

Case 33 29.22 25.97 24.23 28.9 20.90 28.79 21.04
Case 34 15.01 15.51 13.88 14.70 13.83 15.22 13.15
Case 35 9.67 8.98 8.51 9.32 9.13 9.81 9.01
Case 36 34.91 31.38 30.67 33.59 34.15 33.05 32.30
Case 37 82.58 72.00 67.66 81.93 70.54 84.29 58.78

Readers 1 and 2 are separate readers remote in time. Line demarcates the end of 32 cases in 5-ALA trial.



Table W2. Postoperative Tumor Volumes Generated Using Manual, Otsu, and Fuzzy Methods.

Study ID Contrast-Enhancing Tumor Volume (cm3)

Manual Reader 1 Otsu4 Reader 2 Otsu4 Reader 1 Fuzzy3 Reader 2 Fuzzy3 Reader 1 Fuzzy4 Reader 2 Fuzzy4

Case 1 0.22 0.41 1.46 0.43 0.30 0.28 0.29
Case 2 8.25 15.24 19.88 7.07 8.00 8.91 5.25
Case 3 1.49 2.11 2.84 1.77 1.42 1.62 1.93
Case 4 0.82 2.71 0.99 0.65 1.72 2.12 2.17
Case 5 0.62 0.47 0.90 0.62 0.69 0.39 0.75
Case 6 5.0 5.28 6.32 4.32 5.26 4.97 5.84
Case 7 0.08 0.97 0.90 0.05 0.05 0.03 0.00
Case 8 0.05 0.72 0.60 0.65 0.55 0.41 0.65
Case 9 0.01 0.28 0.33 0.11 0.19 0.10 0.31
Case 10 0.69 1.53 3.49 0.65 0.76 0.68 0.90
Case 11 0.04 1.80 3.33 0.06 0.03 0.13 0.66
Case 12 5.87 10.32 10.87 5.58 5.28 7.07 5.88
Case 13 3.94 3.93 2.59 3.66 4.95 3.60 5.01
Case 14 0.64 0.80 0.75 0.72 0.66 0.74 0.52
Case 15 0.52 1.44 6.21 0.86 1.38 0.41 1.28
Case 16 0.05 0.35 0.11 0.08 0.09 0.04 0.04
Case 17 1.28 0.61 0.70 1.26 1.97 1.44 1.58
Case 18 8.06 5.16 5.42 7.83 8.31 8.08 4.54
Case 19 1.20 0.83 2.03 1.28 1.21 1.30 0.84
Case 20 2.36 2.10 2.12 2.17 2.94 2.39 3.61
Case 21 1.58 2.07 2.59 2.02 1.95 1.98 0.96
Case 22 10.42 11.33 11.89 9.70 10.67 10.29 9.29
Case 23 8.60 9.37 10.89 8.35 8.98 8.55 9.31
Case 24 1.91 3.61 5.24 2.56 1.68 2.60 3.05
Case 25 0.64 1.11 3.18 1.38 1.21 0.84 1.71
Case 26 0.03 0.89 0.79 0.55 0.72 0.33 0.27
Case 27 2.12 1.53 1.62 2.36 2.79 2.15 1.29
Case 28 7.28 11.31 15.49 8.27 7.77 9.34 5.89
Case 29 5.77 13.0 13.64 5.70 5.14 8.33 8.80
Case 30 8.62 9.40 8.31 9.83 9.79 8.36 7.49
Case 31 2.95 1.80 6.21 2.94 2.83 3.09 4.05
Case 32 0.91 0.99 0.92 0.92 0.94 0.93 0.79

Case 33 3.73 3.95 2.84 3.16 2.35 3.70 3.46
Case 34 7.63 9.03 9.35 7.20 7.92 8.00 5.60
Case 35 0.91 0.99 0.95 0.88 1.15 1.58 1.23
Case 36 0.58 0.53 0.51 1.76 0.67 0.98 0.43
Case 37 1.14 2.29 2.54 1.93 2.17 1.56 2.01

Readers 1 and 2 are separate readers remote in time. Line demarcates the end of 32 cases in 5-ALA trial.



Figure W1. Preoperative and postoperative Bland-Altman plots of
manual tumor contour volume versus mean semiautomated seg-
mentation volume using Otsu4.

Figure W2. Preoperative and postoperative Bland-Altman plots of
manual tumor contour volume versus mean semiautomated seg-
mentation volume using Fuzzy4.



Figure W3. Preoperative and postoperative Bland-Altman plots of
manual tumor contour volume versus mean semiautomated seg-
mentation volume using Fuzzy3.



Table W3. Mean Ratios, Ratio SDs, Upper, and Lower 95% Limits of Agreement Preoperatively and Postoperatively for Bland-Altman Plots.

Preoperative Postoperative

Otsu4 Fuzzy4 Fuzzy3 Otsu4 Fuzzy4 Fuzzy3

Geometric mean ratio 0.961 1.024 1.014 0.678 0.894 0.828
SD 0.142 0.058 0.042 0.451 0.550 0.306
Upper 95% limit of agreement 1.239 1.137 1.097 1.562 1.972 1.428
Lower 95% limit of agreement 0.682 0.911 0.931 −0.206 −0.184 0.228

Table W4. Mean CCCs with SEM and 95% CIs for Preoperative Tumor Volumes Generated
Using Automated Methods versus Manual Contouring by Two Separate Readers (Reader 1 and
Reader 2).

Otsu4 Fuzzy4 Fuzzy3

CCC 0.981*,† 0.993*,‡ 0.998†,‡

SEM 0.006 0.002 0.001
95% CI (0.963-0.990) (0.988-0.998) (0.997-0.999)

CCC, concordance correlation coefficient; CI, confidence interval.
*P = .027.
†P = .005.
‡P = .025.

Table W5. Mean CCCs with SEM and 95% CIs for Postoperative Tumor Volumes Generated
Using Automated Methods versus Manual Contouring by Two Separate Readers (Reader 1 and
Reader 2).

Otsu4 Fuzzy4 Fuzzy3

CCC 0.780*,† 0.971*,‡ 0.990†,‡

SEM 0.062 0.009 0.003
95% CI (0.626-0.875) (0.953-0.990) (0.983-0.996)

CCC, concordance correlation coefficient; CI, confidence interval.
*P = .002.
†P = .001.
‡P = .045.

Table W6. CCCs with SEM and 95% CIs for Interreader Agreement of Preoperative and Post-
operative Tumor Volumes Generated by Separate Readers (Reader 1 and Reader 2) Using Fuzzy3.

Preoperative Postoperative

CCC 0.990 0.983
SEM 0.003 0.006
95% CI (0.981-0.995) (0.981-0.995)

CCC, concordance correlation coefficient; CI, confidence interval.




