6 research outputs found
Brain derived neurotrophic factor modification of epileptiform burst discharges in a temporal lobe epilepsy model
Introduction: Transforming Growth Factor-Beta 1 (TGF-β1) is a pleiotropic cytokine with potent anti-inflammatory property, which has been considered as an essential risk factor in the inflammatory process of Ischemic Stroke (IS), by involving in the pathophysiological progression of hypertension, atherosclerosis, and lipid metabolisms. -509C/T TGF-β1 gene polymorphism has been found to be associated with the risk of IS. The aim of this meta-analysis was to provide a relatively comprehensive account of the relation between -509C/T gene polymorphisms of TGF-β1 and susceptibility to IS. Methods: Male Wistar rats were divided into sham (receiving phosphate buffered saline within dorsal hippocampus), pilocarpine (epileptic model of TLE), single injection BDNF (epileptic rats which received single high dose of BDBF within dorsal hippocampus), and multiple injections BDNF (epileptic rats which received BDNF in days 10, 11, 12, and 13 after induction of TLE) groups. Their electrocorticogram was recorded and amplitude, frequency, and duration of spikes were evaluated. Results: Amplitude and frequency of epileptiform burst discharges were significantly decreased in animals treated with BDNF compared to pilocarpine group. Conclusion: Our findings suggested that BDNF may modulate the epileptic activity in the animal model of TLE. In addition, it may have therapeutic effect for epilepsy. More studies are necessary to clarify the exact mechanisms of BDNF effects
Fluoxetin upregulates connexin 43 expression in astrocyte
Introduction: Recent studies have shown that astrocytes play major roles in normal and disease condition of the central nervous system including multiple sclerosis (MS). Molecular target therapy studies in MS have revealed that connexin-43 (Cx43) and Aquaporin-4 (AQP4) contents of astrocytes undergo expression alteration. Fluoxetine had some effects in MS patients unrelated to its known antidepressant effects. Some of fluoxetine effects were attributed to its capability of cAMP signaling pathway stimulation. This study aimed to investigate possible acute effects of fluoxetine on Cx43 and AQP4 expression in astrocyte. Methods: Astrocytoma cells were treated for 24 hours with fluoxetine (10 and 20 μg/ml) with or without adenyl cyclase (AC) and protein kinase A (PKA) inhibition. Cx43 expression at both mRNA and protein levels and AQP4 expression at mRNA level were evaluated. Results: Acquired results showed that fluoxetine with and without AC and PKA inhibition resulted in Cx43 up-regulation both in mRNA and protein levels, whereas AQP4 expression have not changed. Discussion: In conclusion, data showed that fluoxetine alone and in the absence of serotonin acutely up-regulated Cx43 expression in astrocytes that can be assumed in molecular target therapy of MS patients. It seems that cAMP involvement in fluoxetine effects need more researches
The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture
Introduction: A 3D-nanofiber scaffold acts in a similar way to the extracellular matrix (ECM)/basement membrane that enhances the proliferation and self-renewal of stem cells. The goal of the present study was to investigate the effects of a poly L-lactic acid (PLLA) nanofiber scaffold on frozen-thawed neonate mouse spermatogonial stem cells (SSCs) and testis tissues. Methods: The isolated spermatogonial cells were divided into six culture groups: (1) fresh spermatogonial cells, (2) fresh spermatogonial cells seeded onto PLLA, (3) frozen-thawed spermatogonial cells, (4) frozen-thawed spermatogonial cells seeded onto PLLA, (5) spermatogonial cells obtained from frozen-thawed testis tissue, and (6) spermatogonial cells obtained from frozen-thawed testis tissue seeded onto PLLA. Spermatogonial cells and testis fragments were cryopreserved and cultured for 3 weeks. Cluster assay was performed during the culture. The presence of spermatogonial cells in the culture was determined by a reverse transcriptase polymerase chain reaction for spermatogonial markers (Oct4, GFRα-1, PLZF, Mvh(VASA), Itgα6, and Itgβ1), as well as the ultrastructural study of cell clusters and SSCs transplantation to a recipient azoospermic mouse. The significance of the data was analyzed using the repeated measures and analysis of variance. Results: The findings indicated that the spermatogonial cells seeded on PLLA significantly increased in vitro spermatogonial cell cluster formations in comparison with the control groups (culture of SSCs not seeded on PLLA) (P�0.001). The viability rate for the frozen cells after thawing was 63.00 ± 3.56. This number decreased significantly (40.00 ± 0.82) in spermatogonial cells obtained from the frozen-thawed testis tissue. Both groups, however, showed in vitro cluster formation. Although the expression of spermatogonial markers was maintained after 3 weeks of culture, there was a significant downregulation for some spermatogonial genes in the experimental groups compared with those of the control groups. Furthermore, transplantation assay and transmission electron microscopy studies suggested the presence of SSCs among the cultured cells. Conclusion: Although PLLA can increase the in vitro cluster formation of neonate fresh and frozen-thawed spermatogonial cells, it may also cause them to differentiate during cultivation. The study therefore has implications for SSCs proliferation and germ cell differentiation in vitro. © 2013 Eslahi et al
Selective β2 adrenergic agonist increases Cx43 and miR-451 expression via cAMP-Epac
It has been demonstrated that connexin 43 (Cx43) and microRNAs have significant roles in glioma. Cyclic adenosine monophosphate (cAMP) is suggested to be a regulator of connexins and microRNAs. However, it remains elusive whether cAMP and exchange protein directly activated by cAMP (Epac2), have a regulatory effect on Cx43 and microRNA-451 (miR-451) in astrocytoma cells. We treated 1321N1 astrocytoma cells with a selective β2 adrenergic agonist and a selective Epac activator with and without adenyl cyclase and protein kinase A inhibition. Cx43 and miR-451 expression were measured. Next, we evaluated the effect of miR-451 overexpression on Cx43 expression. Cell proliferation was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results demonstrated that cAMPE-pac2 increased Cx43 and miR-451 expression. However, the alteration of miR-451 expression required a higher dose of drugs. Overexpression of miR-451 had no significant effect on Cx43 expression. The MTT assay showed that cAMP-Epac stimulation and miR-451 overexpression had a synergic inhibitory effect on cell proliferation. These findings may expand our understanding of the molecular biology of glioma and provide new potential therapeutic targets
BDNF modifies hippocampal KCC2 and NKCC1 expression in a temporal lobe epilepsy model
Excitatory GABA actions, induced by altered expression of chloride transporters (KCC2/NKCC1), can contribute to seizure generation in temporal lobe epilepsy. In the present study, we evaluated whether BDNF administration can affect KCC2/ NKCC1 expression, ictogenesis and behavioral alterations in this paradigm. Status epilepticus was induced in male rats with pilocarpine, followed by a treatment of either a single high dose or multiple injections of BDNF during the latent phase of temporal lobe epilepsy. Chloride transporters expression, spontaneous recurrent seizures, and hyperexcitability post-seizural behaviors were evaluated after treatment. NKCC1 protein expression was markedly upregulated, whereas that of KCC2 was significantly downregulated in epileptic hippocampi compared to intact controls. Application of BDNF (both single high dose and multiple injections) increased KCC2 expression in epileptic hippocampi, while NKCC1 expression was downregulated exclusively by the single high dose injection of BDNF. Development of spontaneous recurrent seizures was delayed but not prevented by the treatment, and hyperexcitability behaviors were ameliorated for a short period of time. To prevent GABA-A mediated depolarization and design appropriate treatment strategies for temporal lobe epilepsy, chloride transporters can be considered as a target. Future studies are warranted to investigate any possible therapeutic effects of BDNF via altering chloride transporters expression. © 2014 by Polish Neuroscience Society - PTBUN, Nencki Institute of Experimental Biology
TRPV1 receptors augment basal synaptic transmission in CA1 and CA3 pyramidal neurons in epilepsy
Temporal lobe epilepsy in human and animals is attributed to alterations in brain function especially hippocampus formation. Changes in synaptic activity might be causally related to the alterations during epileptogenesis. Transient receptor potential vanilloid 1 (TRPV1) as one of the non-selective ion channels has been shown to be involved in synaptic transmission. However, the potential role of TRPV1 receptors in synaptic function in the epileptic brain needs to be elucidated. In the present study, we used quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry to assess hippocampal TRPV1 mRNA expression, protein content, and distribution. Moreover, the effects of pharmacologic activation and inhibition of TRPV1 receptors on the slope of evoked field excitatory postsynaptic potentials (fEPSPs) were analyzed in CA1 and CA3 pyramidal neurons, after 3. months of pilocarpine-induced status epilepticus (SE). SE induced an upregulation of TRPV1 mRNA and protein content in the whole hippocampal extract, as well as its distribution in both CA1 and CA3 regions. Activation and inhibition of TRPV1 receptors (via capsaicin 1. μM and capsazepine 10. μM, respectively) did not influence basal synaptic transmission in CA1 and CA3 regions of control slices, however, capsaicin increased and capsazepine decreased synaptic transmission in both regions in tissues from epileptic animals. Taken together, these findings suggest that a higher expression of TRPV1 in the epileptic condition is accompanied by alterations in basal synaptic transmission. © 2015 IBRO