41 research outputs found

    Temporal context and conditional associative learning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated how temporal context affects the learning of arbitrary visuo-motor associations. Human observers viewed highly distinguishable, fractal objects and learned to choose for each object the one motor response (of four) that was rewarded. Some objects were consistently preceded by specific other objects, while other objects lacked this task-irrelevant but predictive context.</p> <p>Results</p> <p>The results of five experiments showed that predictive context consistently and significantly accelerated associative learning. A simple model of reinforcement learning, in which three successive objects informed response selection, reproduced our behavioral results.</p> <p>Conclusions</p> <p>Our results imply that not just the representation of a current event, but also the representations of past events, are reinforced during conditional associative learning. In addition, these findings are broadly consistent with the prediction of attractor network models of associative learning and their prophecy of a persistent representation of past objects.</p

    Multiple routes of communication within the amygdala-mPFC network: A comparative approach in humans and macaques

    No full text
    The network formed by the amygdala (AMG) and the medial Prefrontal Cortex (mPFC), at the interface between our internal and external environment, has been shown to support some important aspects of behavioral adaptation. Whether and how the anatomo-functional organization of this network evolved across primates remains unclear. Here, we compared AMG nuclei morphological characteristics and their functional connectivity with the mPFC in humans and macaques to identify potential homologies and differences between these species. Based on selected studies, we highlight two subsystems within the AMG-mPFC circuits, likely involved in distinct temporal dynamics of integration during behavioral adaptation. We also show that whereas the mPFC displays a large expansion but a preserved intrinsic anatomo-functional organization, the AMG displays a volume reduction and morphological changes related to specific nuclei. We discuss potential commonalities and differences in the dialogue between AMG nuclei and mPFC in humans and macaques based on available data

    Probing the role of the vestibular system in motivation and reward-based attention

    No full text
    The vestibular system has widespread connections in the central nervous system. Several activation loci following vestibular stimulations have been notably reported in deep, limbic areas that are otherwise difficult to reach and modulate in healthy subjects. Following preliminary evidence, suggesting that such stimulations might affect mood and affective processing, we wondered whether the vestibular system is also involved in motivation. Evolutionary accounts suggest that visuo-vestibular mismatches might have a role in preventing the search for and exploitation of goods that previously resulted in aversive reactions, as they would be a fine warning signal which follows the contact with or ingestion of noxious neurotoxins. The first question was thus whether vestibular stimulation alters sensitivity to reward. Secondly, we sought to assess whether attention is allocated in space differently when cued by highly motivational stimuli, and if this interplay is further modulated by the vestibular system. In order to evaluate both motivational and attentional assets, we administered a Posner-like cueing task to 30 healthy subjects concurrently receiving sham or galvanic vestibular stimulation (GVS; Left-Anodal and Right-Anodal configurations). The participants had to discriminate targets appearing in either exogenously cued or uncued locations (50% validity); cues predicted the amount of points (0, 2, or 10) and thus money that they could earn for a correct response. The results highlight a robust inhibition of return (IOR) (faster responses for invalidly-cued targets) which was not modulated by different levels of reward or GVS. Across all stimulation sessions, rewards exerted a powerful beneficial effect over performance: reaction times were faster when rewards were at stake. However, this effect was largest in sham, but greatly reduced in GVS conditions, most notably with the Right-Anodal configuration. This is the first evidence for a decreased sensitivity to rewards causally induced by a perturbation of the vestibular system. While future studies will shed light on its neural underpinnings and clinical implications, here we argue that GVS could be a safe and promising way to enrich our understanding of reward processes and eventually tackle the management of patients with aberrant sensitivity to rewards

    Hierarchical Encoding of Social Cues in Primate Inferior Temporal Cortex.

    No full text
    Faces convey information about identity and emotional state, both of which are important for our social interactions. Models of face processing propose that changeable versus invariant aspects of a face, specifically facial expression/gaze direction versus facial identity, are coded by distinct neural pathways and yet neurophysiological data supporting this separation are incomplete. We recorded activity from neurons along the inferior bank of the superior temporal sulcus (STS), while monkeys viewed images of conspecific faces and non-face control stimuli. Eight monkey identities were used, each presented with 3 different facial expressions (neutral, fear grin, and threat). All facial expressions were displayed with both a direct and averted gaze. In the posterior STS, we found that about one-quarter of face-responsive neurons are sensitive to social cues, the majority of which being sensitive to only one of these cues. In contrast, in anterior STS, not only did the proportion of neurons sensitive to social cues increase, but so too did the proportion of neurons sensitive to conjunctions of identity with either gaze direction or expression. These data support a convergence of signals related to faces as one moves anteriorly along the inferior bank of the STS, which forms a fundamental part of the face-processing network
    corecore