404 research outputs found
Surface plasmon enhanced UV emission in AlGaN/GaN quantum well
The surface plasmon (SP) energy for resonant enhancement of light has shown to be modified by the epitaxial substrate and the overlying metalthin film. The modification of SP energy in AlGaN/GaN epitaxial layers is studied using spectroscopic ellipsometry for enhanced UV-light emission. Silver induced SP can be extended to the UV wavelength range by increasing the aluminum concentration in AlxGa1−xN epilayer. A threefold increase in the UV-light emission is observed from AlGaN/GaN quantum well due to silver induced SP. Photoluminescence lifetime measurements confirm the resonant plasmon induced increase in Purcell factor as observed from the PL intensity measurements
Two-subband conduction in a gated high density InAlN/AlN/GaN heterostructure
Magnetotransport measurements on an In0.16Al0.84N/AlN/GaN gated Hall bar sample have been performed at 0.28 K. By the application of a gate voltage we were able to vary the total two-dimensional electron gas density from 1.83×1013 to 2.32×1013 cm−2. Two frequency Shubnikov–de Haas oscillations indicate occupation of two subbands by electrons. The density of electrons in the first and second sublevels are found to increase linearly with gate voltage with a slope of 2.01×1012 cm−2/V and 0.47×1012 cm−2/V, respectively. And the quantum lifetimes for the first and second subbands ranged from 0.55 to 0.95×10−13 s and from 1.2 to 2.1×10−13 s
Investigation of inversion domains in GaN by electric-force microscopy
Inversion domains in III-nitride semiconductors degrade the performance of devicesfabricated in them. Consequently, it is imperative that we understand their electrostatic manifestation, the growth conditions under which such domains form, and an effective means of their identification. In what is nominally referred to as Ga-polarity samples, N-polarity domains have a polarization that is reversed with respect to the remainder of the surface, and therefore, have a different potential under strain. We have used surface-potential electric-force microscopy (SP-EFM) to image the electrostaticsurface potential of GaNgrown on sapphire, which is strained due to the thermal mismatch between the substrate and GaN. Employing a control sample with side-by-side Ga- and N-polarity regions, we have established the EFM mode necessary to identify inversion domains on GaN samples grown by molecular-beam epitaxy. This method is not sensitive to topology and has a spatial resolution of under 100 nm. The measured surface potentials for Ga-face and N-face regions are +25±10 and −30±10 mV, respectively, with respect to the sapphire substrate, where the sign is consistent with Ga- and N-polarity GaN under compressive strain due to thermal mismatch with the sapphire substrate
Gallium desorption kinetics on (0001) GaN surface during the growth of GaN by molecular-beam epitaxy
Gallium (Ga) surfacedesorption behavior was investigated using reflection high-energy electron diffraction during the GaNgrowth. It was found that the desorption of Ga atoms from the (0001) GaNsurfaces under different III-V ratio dependents on the coverage of adsorbed atoms. Doing so led to desorption energies of 2.76 eV for Ga droplets, 1.24–1.89 eV for Ga under Ga-rich growth conditions, and 0.82 eV – 0.94 eV for Ga under stoichiometric growth conditions. Moreover, the variation of the GaNsurface morphology under different III-V ratios on porous templates supports the conclusion that Ga desorption energy depends on the coverage, and the III/V ratio dominates the growth mode
Nonpolar m-plane GaN on patterned Si(112) substrates by metalorganic chemical vapor deposition
The concept of nonpolar (11¯00) m-plane GaN on Si substrates has been demonstrated by initiating growth on the vertical (1¯1¯1) sidewalls of patterned Si(112) substrates using metalorganic chemical vapor deposition. The Si(112) substrates were wet-etched to expose {111} planes using stripe-patterned SiNx masks oriented along the [1¯10] direction. Only the vertical Si(1¯1¯1) sidewalls were allowed to participate in GaNgrowth by masking other Si{111} planes using SiO2, which led to m-plane GaNfilms.Growth initiating on the Si(1¯1¯1) planes normal to the surface was allowed to advance laterally and also vertically toward full coalescence. InGaN double heterostructure active layers grown on these m-GaN templates on Si exhibited two times higher internal quantum efficiencies as compared to their c-plane counterparts at comparable carrier densities. These results demonstrate a promising method to obtain high-quality nonpolar m-GaN films on large area, inexpensive Si substrates
Nanostructuring induced enhancement of radiation hardness in GaN epilayers
The radiation hardness of as-grown and electrochemically nanostructured GaN epilayers against heavy ion irradiation was studied by means of photoluminescence(PL) and resonant Raman scattering (RRS) spectroscopy. A nanostructuring induced enhancement of the GaN radiation hardness by more than one order of magnitude was derived from the PL and RRS analyses. These findings show that electrochemical nanostructuring of GaN layers is a potentially attractive technology for the development of radiation hard devices
Electron mobility in InGaN channel heterostructure field effect transistor structures with different barriers
InGaN possesses higher electron mobility and velocity than GaN, and therefore is expected to lead to relatively better performances for heterostructure field effect transistors (HFETs). However, the reported mobilities for AlGaN∕InGaNHFETs are lower than GaN channel HFETs. To address this issue, we studied the effect of different barriers on the Hall mobility for InGaN channel HFETs grown by metal organic chemical vapor deposition. Unlike the conventional AlGaN barrier, the AlInN barrier can be grown at the same temperature as the InGaN channel layer, alleviating some of the technological roadblocks. Specifically, this avoids possible degradation of the thin InGaN channel during AlGaN growth at high temperatures; and paves the way for better interfaces. An undoped In0.18Al0.82N∕AlN∕In0.04Ga0.96NHFET structure exhibited a μH=820cm2/Vs, with a ns=2.12×1013cm−2 at room temperature. Moreover, with an In-doped AlGaN barrier, namely, Al0.24In0.01Ga0.75N, grown at 900°C, the μH increased to 1230cm2/Vs with a ns of 1.09×1013cm−2 for a similar InGaN channel. Furthermore, when the barrier was replaced by Al0.25Ga0.75N grown at 1030°C, μH dropped to 870cm2/Vs with ns of 1.26×1013cm−2 at room temperature. Our results suggest that to fully realize the potential of the InGaN channel HFETs, AlInN or AlInGaN should be used as the barrier instead of the conventional AlGaN barrier
Bias-assisted photoelectrochemical etching of p-GaN at 300 K
Photoelectrochemical (PEC)etching of p-type GaN has been realized in room temperature, 0.1 M KOH solutions. PECetching of GaN was achieved by applying a positive bias to the surface of the p-GaN layer through a deposited titanium mask. The applied bias reduces the field at the semiconductor surface, which induced the dissolution of the GaN. The effect of bias on etch rate and morphology was examined. It was found that insulating the Ti mask from the KOH solution with Si3N4 significantly increases the etch rate. The rms roughness of the etched region decreased as the bias voltage increased. Etch rates as high as 4.4 nm/min were recorded for films etched at 2 V
Near-field optical spectroscopy and microscopy of self-assembled GaN∕AlN nanostructures
The spatial distribution and emission properties of small clusters of GaNquantum dots in an AlN matrix are studied using high-resolution electron and optical microscopy. High-resolution transmission electron microscopy reveals near vertical correlation among the GaNdots due to a sufficiently thin AlN spacer layer thickness, which allows strain induced stacking. Scanning electron and atomic force microscopy show lateral coupling due to a surface roughness of ∼50–60nm. Near-field photoluminescence in the illumination mode (both spatially and spectrally resolved) at 10K revealed emission from individual dots, which exhibits size distribution of GaNdots from localized sites in the stacked nanostructure. Strong spatial localization of the excitons is observed in GaNquantum dots formed at the tip of self-assembled hexagonal pyramid shapes with six [101¯1¯] facets
Camelback channel for fast decay of LO phonons in GaN heterostructure field-effect transistor at high electron density
Fluctuation technique is used to measure hot-phonon lifetime in dual channel GaN-based configuration proposed to support high-power operation at high frequencies. The channel is formed of a composite Al0.1Ga0.9N/GaN structure situated in an Al0.82In0.18N/AlN/Al0.1Ga0.9N/GaN heterostructure. According to capacitance–voltage measurements and simultaneous treatment of Schrödinger–Poisson equations, the mobile electrons in this dual channel configuration form a camelback density profile at elevated hot-electron temperatures. The hot-phonon lifetime was found to depend on the shape of the electron profile rather than solely on its sheet density. The camelback channel with an electron sheet density of 1.8 × 1013 cm−2 demonstrates ultrafast decay of hot phonons at hot-electron temperatures above 600 K: the hot-phonon lifetime is below ∼60 fs in contrast to ∼600 fs at an electron sheet density of 1.2 × 1013 cm−2 obtained in a reference Al0.82In0.18N/AlN/GaN structure at 600 K. The results suggest a suitable method to increase the electron sheet density without the deleterious effect caused by inefficient hot-phonon decay observed in a standard design at similar electron densities
- …
