11 research outputs found

    Epidemiological and genetic characterization of pH1N1 and H3N2 influenza viruses circulated in MENA region during 2009–2017

    No full text
    Influenza surveillance is necessary for detection of emerging variants of epidemiologic and clinical significance. This study describes the epidemiology of influenza types A and B, and molecular characteristics of surface glycoproteins (hemagglutinin [HA] and neuraminidase [NA]) of influenza A subtypes: pH1N1 and H3N2 circulated in Arabian Gulf, Levant and North Africa regions during 2009–2017. Analysis of phylogenetics and evolution of HA and NA genes was done using full HA and NA sequences (n = 1229) downloaded from Influenza Research Database (IRD). In total, 130,354 influenza positive cases were reported to WHO during study period. Of these, 50.8% were pH1N1 positive, 15.9% were H3N2 positives and 17.2% were influenza B positive. With few exceptions, all three regions were showing the typical seasonal influenza peak similar to that reported in Northern hemisphere (December–March). However, influenza activity started earlier (October) in both Gulf and North Africa while commenced later during November in Levant countries. The molecular analysis of the HA genes (influenza A subtypes) revealed similar mutations to those reported worldwide. Generally, amino acid substitutions were most frequently found in head domain in H1N1 pandemic viruses, while localized mainly in the stem region in H3N2 viruses. Expectedly, seasons with high pH1N1 influenza activity was associated with a relatively higher number of substitutions in the head domain of the HA in pH1N1 subtype. Furthermore, nucleotide variations were lower at the antigenic sites of pH1N1 viruses compared to H3N2 viruses, which experienced higher variability at the antigenic sites, reflecting the increased immunological pressure because of longer circulation and continuous vaccine changes. Analysis of NA gene of pH1N1 viruses revealed sporadic detections of oseltamivir-resistance mutation, H275Y, in 4% of reported sequences, however, none of NAI resistance mutations were found in the NA of H3N2 viruses. Molecular characterization of H1N1 and H3N2 viruses over 9 years revealed significant differences with regard to position and function of characterized substitutions. While pH1N1 virus substitutions were mainly found in HA head domain, H3N2 virus substitutions were mostly found in HA stem domain. Additionally, more fixed substitutions were encountered in H3N2 virus compared to larger number of non-fixed substitutions in pH1N1.Other Information Published in: BMC Infectious Diseases License: http://creativecommons.org/licenses/by/4.0/See article on publisher's website: http://dx.doi.org/10.1186/s12879-019-3930-6</p

    Microbiome profiling of rotavirus infected children suffering from acute gastroenteritis

    No full text
    Background Rotavirus (RV) is a leading cause of pediatric diarrhea and mortality worldwide. The virus causes acute gastroenteritis characterized by moderate to severe vomiting, diarrhea, dehydration, and fever. Microbial dysbiosis caused by RV infection may significantly influence disease prognosis and the development of other chronic diseases. The gut microbiome plays a vital role in enteric immune response for rotavirus vaccine (RVV) that requires further elucidations. The current study evaluates the gut microbiome of RV positive children and compares gastroenteritis manifestation in children admitted to the Pediatric Emergency Centre, Hamad Medical Cooperation, Doha, Qatar. Stool samples were collected from thirty-nine RV positive and eight healthy control children. 16S rRNA sequence was performed using the Illumina MiSeq platform. Results The data demonstrated a significant increase in microbiome diversity denoted by higher relative abundances of phylum Proteobacteria (p = 0.031), Fusobacteria (p = 0.044) and genus Streptococcus (p ≤ 0.001) in the infected group relative to the control. Similarly, district clustering pattern (PERMANOVA p = 0.01) and higher species richness (Shannon entropy p = 0.018) were observed in the children who received two RVV doses compared with the non-vaccinated or single-dose groups. These microbiome changes were represented by over-abundance of phylum Bacteroidetes (p = 0.003) and Verrucomicrobia (p ≤ 0.001), and lower expression of family Enterobacteriaceae in two RVV doses group. However, microbiome composition was not associated with diarrhea, vomiting, and other parameters of gastroenteritis. Conclusions The observations assert significant microbial signatures of RVV, which is dose-dependent, and suggest manipulating these microbes as a novel approach for improving RVV efficacy. Further studies are warranted to investigate the immune status of these patients and mechanistic investigation to enhance RVV seroconversion.Other Information Published in: Gut Pathogens License: http://creativecommons.org/licenses/by/4.0/See article on publisher's website: http://dx.doi.org/10.1186/s13099-021-00411-x</p

    Table_1_The retrospective study of the metabolic patterns of BCG-vaccination in type-2 diabetic individuals in COVID-19 infection.xlsx

    No full text
    BackgroundThe cross-protective nature of Bacillus Calmette-Guerin (BCG) vaccine against SARS-CoV-2 virus was previously suggested, however its effect in COVID-19 patients with type 2 diabetes (T2D) and the underlying metabolic pathways has not been addressed. This study aims to investigate the difference in the metabolomic patterns of type 2 diabetic patients with BCG vaccination showing different severity levels of COVID-19 infection.MethodsSixty-seven COVID-19 patients were categorized into diabetic and non-diabetic individuals who had been previously vaccinated or not with BCG vaccination. Targeted metabolomics were performed from serum samples from all patients using tandem mass spectrometry. Statistical analysis included multivariate and univariate models.ResultsData suggested that while BCG vaccination may provide protection for individuals who do not have diabetes, it appears to be linked to more severe COVID-19 symptoms in T2D patients (p = 0.02). Comparing the metabolic signature of BCG vaccinated T2D individuals to non-vaccinated counterparts revealed that amino acid (sarcosine), cholesterol esters (CE 20:0, 20:1, 22:2), carboxylic acid (Aconitic acid) were enriched in BCG vaccinated T2D patients, whereas spermidine, glycosylceramides (Hex3Cer(d18:1_22:0), Hex2Cer(d18:1/22:0), HexCer(d18:1/26:1), Hex2Cer(d18:1/24:0), HexCer(d18:1/22:0) were higher in BCG vaccinated non- T2D patients. Furthermore, data indicated a decrease in sarcosine synthesis from glycine and choline and increase in spermidine synthesis in the BCG vaccinated cohort in T2D and non-T2D groups, respectively.ConclusionThis pilot study suggests increased severity of COVID-19 in BCG vaccinated T2D patients, which was marked by decreased sarcosine synthesis, perhaps via lower sarcosine-mediated removal of viral antigens.</p

    Interpretation of EBV serological pattens in immunocompetent individuals <sup>a</sup>.

    No full text
    <p>Interpretation of EBV serological pattens in immunocompetent individuals <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0189033#t001fn001" target="_blank"><sup>a</sup></a>.</p
    corecore