7 research outputs found

    Dynamic Modelling and Advanced Process Control of Power Block for a Parabolic Trough Solar Power Plant

    No full text
    A fundamental task in the dynamic simulation of parabolic trough power plants (PTPP) is to understand the behavior of the system physics and control loops in the presence of weather variations. This study provides a detailed description of the advanced controllers used in the power block (PB) of a 50 MWel parabolic trough power plant (PTPP). The PB model is achieved using APROS software based on the actual specifications of the existing power plant. To verify the behaviour of the PB model, a comparison between the simulated results and given real data is documented depending on a previous study, and the results indicate a reasonable degree of correspondence. The purpose of this study is to create reference models for the PB. Thereby, developers and engineers will have a better understanding of the state of the art of advanced control loops in these power plants. Moreover, these types of models can be used to specify the most suitable mode of operation for the power plant. In addition, this study gives an overview of dynamic simulation for the design, optimisation and development of power blocks in parabolic trough power plants

    Dynamic Modelling and Advanced Process Control of Power Block for a Parabolic Trough Solar Power Plant

    Get PDF
    A fundamental task in the dynamic simulation of parabolic trough power plants (PTPP) is to understand the behavior of the system physics and control loops in the presence of weather variations. This study provides a detailed description of the advanced controllers used in the power block (PB) of a 50MWel parabolic trough power plant (PTPP). The PB model is achieved using APROS software based on the actual specifications of the existing power plant. To verify the behaviour of the PB model, a comparison between the simulated results and given real data is documented depending on a previous study, and the results indicate a reasonable degree of correspondence. The purpose of this study is to create reference models for the PB. Thereby, developers and engineers will have a better understanding of the state of the art of advanced control loops in these power plants. Moreover, these types of models can be used to specify the most suitable mode of operation for the power plant. In addition, this study gives an overview of dynamic simulation for the design, optimisation and development of power blocks in parabolic trough power plants
    corecore