32 research outputs found

    Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera

    Full text link
    The measurement of photon-number statistics of fields composed of photon pairs, generated in spontaneous parametric down-conversion and detected by an intensified CCD camera is described. Final quantum detection efficiencies, electronic noises, finite numbers of detector pixels, transverse intensity spatial profiles of the detected beams as well as losses of single photons from a pair are taken into account in a developed general theory of photon-number detection. The measured data provided by an iCCD camera with single-photon detection sensitivity are analyzed along the developed theory. Joint signal-idler photon-number distributions are recovered using the reconstruction method based on the principle of maximum likelihood. The range of applicability of the method is discussed. The reconstructed joint signal-idler photon-number distribution is compared with that obtained by a method that uses superposition of signal and noise and minimizes photoelectron entropy. Statistics of the reconstructed fields are identified to be multi-mode Gaussian. Elements of the measured as well as the reconstructed joint signal-idler photon-number distributions violate classical inequalities. Sub-shot-noise correlations in the difference of the signal and idler photon numbers as well as partial suppression of odd elements in the distribution of the sum of signal and idler photon numbers are observed.Comment: 14 pages, 14 figure

    Coherence properties of high-gain twin beams generated in pump-depletion regime

    Full text link
    Twin-beam coherence properties are analyzed both in the spatial and spectral domains at high-gain regime including pump depletion. The increase of the size of intensity auto- and cross-correlation areas at increasing pump power is replaced by a decrease in the pump depletion regime. This effect is interpreted as a progressive loss in the mode selection occurring at high-gain amplification. The experimental determination of the number of spatio-spectral modes from g(2)g^{(2)} -function measurements confirms this explanation.Comment: 7 pages, 7 figure

    Multiple-photon resolving fiber-loop detector

    Get PDF
    We show first reconstructions of the photon-number distribution obtained with a multi-channel fiber-loop detector. Apart from analyzing the statistics of light pulses this device can serve as a sophisticated postselection device for experiments in quantum optics and quantum information. We quantify its efficiency by means of the Fisher information and compare it to the efficiency of the ideal photodetector.Comment: 5 pages, 6 figure

    Spectral structure and decompositions of optical states, and their applications

    Get PDF
    We discuss the spectral structure and decomposition of multi-photon states. Ordinarily `multi-photon states' and `Fock states' are regarded as synonymous. However, when the spectral degrees of freedom are included this is not the case, and the class of `multi-photon' states is much broader than the class of `Fock' states. We discuss the criteria for a state to be considered a Fock state. We then address the decomposition of general multi-photon states into bases of orthogonal eigenmodes, building on existing multi-mode theory, and introduce an occupation number representation that provides an elegant description of such states that in many situations simplifies calculations. Finally we apply this technique to several example situations, which are highly relevant for state of the art experiments. These include Hong-Ou-Mandel interference, spectral filtering, finite bandwidth photo-detection, homodyne detection and the conditional preparation of Schr\"odinger Kitten and Fock states. Our techniques allow for very simple descriptions of each of these examples.Comment: 12 page

    Photon-number-resolving detectors for quantum-state engineering: introduction to the feature issue

    No full text
    Generation and measurement of quantum states of light represent a hot and widely discussed topic in the physical community for their possible applications to quantum optics and quantum information. To this aim, it is desirable that optical states are robust with respect to losses and can be produced and addressed at high rates. In fact, mesoscopic pulsed optical states containing few photons per pulse seem to be the ideal candidates for applications to quantum communication protocols. For all these reasons, during the last two decades many efforts have been devoted to the development of new kinds of detectors that can operate in such a photon-number-resolving domain

    Spatial properties of twin-beam correlations at low-to high-intensity transition

    Get PDF
    It is shown that spatial correlation functions measured for correlated photon pairs at the single-photon level correspond to speckle patterns visible at high intensities. This correspondence is observed for the first time in one experimental setup by using different acquisition modes of an intensified CCD camera in low and high intensity regimes. The behavior of intensity auto-and cross-correlation functions in dependence on pumpbeam parameters including power and transverse profile is investigated
    corecore