945 research outputs found

    Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing

    Get PDF
    Diamond's nitrogen vacancy (NV) center is an optically active defect with long spin coherence times, showing great potential for both efficient nanoscale magnetometry and quantum information processing schemes. Recently, both the formation of buried 3D optical waveguides and high quality single NVs in diamond were demonstrated using the versatile femtosecond laser-writing technique. However, until now, combining these technologies has been an outstanding challenge. In this work, we fabricate laser written photonic waveguides in quantum grade diamond which are aligned to within micron resolution to single laser-written NVs, enabling an integrated platform providing deterministically positioned waveguide-coupled NVs. This fabrication technology opens the way towards on-chip optical routing of single photons between NVs and optically integrated spin-based sensing

    Velocity Map Imaging the Scattering Plane of Gas Surface Collisions

    Get PDF
    The ability of gas-surface dynamics studies to resolve the velocity distribution of the scattered species in the 2D sacattering plane has been limited by technical capabilities and only a few different approaches have been explored in recent years. In comparison, gas-phase scattering studies have been transformed by the near ubiquitous use of velocity map imaging. We describe an innovative means of introducing a surface within the electric field of a typical velocity map imaging experiment. The retention of optimum velocity mapping conditions was demonstrated by measurements of iodomethane-d3 photodissociation and SIMION calculations. To demonstrate the systems capabilities the velocity distributions of ammonia molecules scattered from a PTFE surface have been measured for multiple product rotational states.Comment: 8 pages, 5 figures, to be submitted to journa

    Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets

    Full text link
    Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit timing variations (TTV) and transit duration variations (TDV) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own Solar System. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.Comment: Revised version. Invited review submitted to 'Handbook of Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at https://github.com/ericagol/TTV_revie

    Underground railroads: citizen entitlements and unauthorized mobility in the antebellum period and today

    Get PDF
    In recent years, some scholars and prominent political figures have advocated the deepening of North American integration on roughly the European Union model, including the creation of new political institutions and the free movement of workers across borders. The construction of such a North American Union, if it included even a very thin trans-state citizenship regime, could represent the most significant expansion of individual entitlements in the region since citizenship was extended to former slaves in the United States. With such a possibility as its starting point, this article explores some striking parallels between the mass, legally prohibited movement across boundaries by fugitive slaves in the pre-Civil War period, and that by current unauthorized migrants to the United States. Both were, or are, met on their journeys by historically parallel groups of would-be helpers and hinderers. Their unauthorized movements in both periods serve as important signals of incomplete entitlements or institutional protections. Most crucially, moral arguments for extending fuller entitlements to both groups are shown here to be less distinct than may be prima facie evident, reinforcing the case for expanding and deepening the regional membership regime

    Coherent, mechanical control of a single electronic spin

    Get PDF
    The ability to control and manipulate spins via electrical, magnetic and optical means has generated numerous applications in metrology and quantum information science in recent years. A promising alternative method for spin manipulation is the use of mechanical motion, where the oscillation of a mechanical resonator can be magnetically coupled to a spins magnetic dipole, which could enable scalable quantum information architectures9 and sensitive nanoscale magnetometry. To date, however, only population control of spins has been realized via classical motion of a mechanical resonator. Here, we demonstrate coherent mechanical control of an individual spin under ambient conditions using the driven motion of a mechanical resonator that is magnetically coupled to the electronic spin of a single nitrogen-vacancy (NV) color center in diamond. Coherent control of this hybrid mechanical/spin system is achieved by synchronizing pulsed spin-addressing protocols (involving optical and radiofrequency fields) to the motion of the driven oscillator, which allows coherent mechanical manipulation of both the population and phase of the spin via motion-induced Zeeman shifts of the NV spins energy. We demonstrate applications of this coherent mechanical spin-control technique to sensitive nanoscale scanning magnetometry.Comment: 6 pages, 4 figure

    Effect of the nanopillar diameter on diamond silicon vacancy center spin lifetime

    Get PDF
    Color centers in diamond micro and nano-structures play an important role in a wide range of quantum technologies. However, obtaining high-quality color centers in small structures is challenging, as properties such as spin population lifetimes can be affected by the transition from a bulk to nanostructured crystal host. In this manuscript, we measure how population lifetimes of silicon vacancy center orbital states change when they are created in nanopillars whose diameters vary from 1 μm to 120 nm. We also discuss the influence of annealing methods on the silicon vacancy inhomogeneous linewidth. After selecting a sample with low inhomogeneous broadening and patterning it with nanopillars, we expected that restricted vibrational modes in the smallest structures could extend spin population lifetimes. However, we found that this effect was masked by other effects that reduced population lifetimes, suggesting that imperfections in the crystal lattice or surface damage caused by etching can influence SiV spins
    corecore