7 research outputs found
Segmenting breast cancerous regions in thermal images using fuzzy active contours
Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845± 0.0619, 0.0710 ± 0.0381 mm respectively. Furthermore, the sensitivity in recognizing the thermal pattern in breast tissue masses is 85 % and its accuracy is 91.98 %.A thermal imaging system has been proposed that is able to recognize abnormal breast tissue masses. This system utilizes fuzzy active contours to extract the abnormal regions automatically
Diagnosing Breast Cancer with the Aid of Fuzzy Logic Based on Data Mining of a Genetic Algorithm in Infrared Images
Background: Breast cancer is one of the most prevalent cancers among women today. The importance of breast cancer screening, its role in the timely identification of patients, and the reduction in treatment expenses are considered to be among the highest sanitary priorities of a modern country. Thermal imaging clearly possesses a special role in this stage due to rapid diagnosis and use of harmless rays.Methods: We used a thermal camera for imaging of the patients. Important parameters were derived from the images for their posterior analysis with the aid of a genetic algorithm. The principal components that were entered in a fuzzy neural network for clustering breast cancer were identified.Results: The number of images considered for the test included a database of 200 patients out of whom 15 were diagnosed with breast cancer via mammography. Results of the base method show a sensitivity of 93%. The selection of parameters in the combination module gave rise measured errors, which in training of the fuzzy-neural network were of the order of clustering 1.0923Ă—10-5, which reached 2%.Conclusion: The study indicates that thermal image scanning coupled with the presented method based on artificial intelligence can possess a special status in screening women for breast cancer due to the use of harmless non-radiation rays. There are cases where physicians cannot decisively say that the observed pattern in theimage is benign or malignant. In such cases, the response of the computer model can be a valuable support tool for the physician enabling an accurate diagnosis based on the type of imaging pattern as a response from the computer model
Chemspyd: An Open-Source Python Interface for Chemspeed Robotic Chemistry and Materials Platforms
We introduce Chemspyd, a lightweight, open-source Python package for operating the popular laboratory robotic platforms from Chemspeed Technologies. As an add-on to the existing proprietary software suite, Chemspyd enables dynamic communication with the automated platform, laying the foundation for its modular integration into customizable, higher-level laboratory workflows. We show the applicability of Chemspyd in a set of case studies from chemistry and materials science. We demonstrate how the package can be used with large language models to provide a natural language interface. By providing an open-source software interface for a commercial robotic platform, we hope to inspire the development of open interfaces that facilitate the flexible, adaptive integration of existing laboratory equipment into automated laboratories
Delocalized, asynchronous, closed-loop discovery of organic laser emitters
Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing—and democratizing—scientific discovery
Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters
<p>Datasets related to the paper "Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters".</p>
<ul>
<li>Structures of all building blocks (cap_building_blocks.csv, bridge_building_blocks.csv, core_building_blocks.csv)</li>
<li>Seed dataset of OSL emitters and their spectroscopic properties (seed_dataset_exp.csv)</li>
<li>Full dataset of OSL emitters and their spectroscopic properties (full_dataset_exp.csv)</li>
<li>Selected computed excited-state descriptors for training the graph neural network (seed_dataset_tddft.csv)</li>
<li>Full dataset of computed excited-state descriptors (full_dataset_comp.csv)</li>
<li>Raw HPLC-MS data of all synthesis – characterization runs (hplcms_runs.zip)</li>
<li>Raw NMR data of all fully characterized compounds (nmr_data.zip)</li>
</ul>
Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters
Contemporary materials discovery requires intricate sequences of synthesis, formulation and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enables delocalized and asynchronous design–make–test–analyze cycles. We showcase this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based AI experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Automated gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing – and democratizing – scientific discovery