82 research outputs found

    New insights in polydopamine formation via surface adsorption

    Get PDF
    Polydopamine is a biomimetic self-adherent polymer, which can be easily deposited on a wide variety of materials. Despite the rapidly increasing interest in polydopamine-based coatings, the polymerization mechanism and the key intermediate species formed during the deposition process are still controversial. Herein, we report a systematic investigation of polydopamine formation on halloysite nanotubes; the negative charge and high surface area of halloysite nanotubes favour the capture of intermediates that are involved in polydopamine formation and decelerate the kinetics of the process, to unravel the various polymerization steps. Data from X-ray photoelectron and solid-state nuclear magnetic resonance spectroscopies demonstrate that in the initial stage of polydopamine deposition, oxidative coupling reaction of the dopaminechrome molecules is the main reaction pathway that leads to formation of polycatecholamine oligomers as an intermediate and the post cyclization of the linear oligomers occurs subsequently. Furthermore, TRIS molecules are incorporated into the initially formed oligomers

    Robust antimicrobial photodynamic therapy with curcumin-poly (lactic-co-glycolic acid) nanoparticles against COVID-19: A preliminary in vitro study in Vero cell line as a model

    Get PDF
    Background: In this study, the ability of antimicrobial photodynamic therapy (aPDT) as a treatment approach and adjuvant therapy using curcumin-poly (lactic-co-glycolic acid) nanoparticles (Cur@PLGA-NPs) to inactivate Coronavirus disease 2019 (COVID-19) in plasma was investigated. Furthermore, to verify whether the quality requirement of aPDT-treated plasma is acceptable, the differences of the levels of clotting factors, total plasma proteins, and anti-A and/or anti-B antibodies titrations in plasma of patient before and after aPDT treatment were investigated. Materials and Methods: Cur@PLGA-NPs was synthesized using Electrospinning process and characterized by different analysis including Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Fourier Transform Infrared (FTIR) spectroscopy assays. The presence of the SARS-CoV-2 in the plasma samples of patients suspected of having COVID-19 was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. Then, the treated plasma samples with Cur@PLGA-NPs plus blue laser were exposed to Vero cells. Eventually, cell cytotoxicity and apoptotic effects of treated Vero cells were evaluated. Levels of clotting factors including prothrombin time (PT) and activated partial thromboplastin time (APTT), total plasma proteins, and anti-A and/or anti-B antibodies measurements were performed using the coagulometer, method of Bradford, and titration procedure, respectively. Results: The presence of SARS-CoV-2 was positive in 84.3 of samples. Different concentrations of Cur@PLGA-NPs (3, 5, 7, and 10 wt.), the irradiation times of blue laser (1, 3, and 5 min), and aPDT with the maximum dosed of blue laser light (522.8 J/cm2) plus 10 wt. Cur@PLGA-NPs had no cytotoxicity. Although there were significant cell degradation and apoptotic effects in treated Vero cells with treated plasma using 10 wt. Cur@PLGA-NPs, and a blue laser at an energy density of 522.8 J/cm2, no visible changes in cells and apoptosis were observed following aPDT. Total plasma protein content, PT, APTT, and anti-A and/or anti-B antibodies titers showed no significant changes (P > 0.05 for all comparisons) in treated plasma as compared to untreated plasma. Conclusion: aPDT exhibited in vitro anti-COVID-19 activities in the treated plasma containing SARS-COV-2 without Vero cell apoptosis and any adverse effects on plasma quality in aPDT-exposed plasma. © 2021 Elsevier B.V

    Synthesis of Polystyrene/MCM–41 Nanocomposites through AGET ATRP and ARGET ATRP

    No full text
    Polystyrene/MCM–41 nanocomposites were synthesized by atom transfer radical polymerization (ATRP) at 110°C. Activators generated by electron transfer (AGET) and activators regenerated by electron transfer (ARGET), as two novel initiation techniques, for ATRP were used. Specific structure, surface area, particles size and their distribution and spongy and porous structure of the synthesized MCM–41 nanoparticles were evaluated using X–ray diffraction, nitrogen adsorption/desorption isotherm analysis, scanning and transmission electron microscopy images, respectively. The final monomer conversion was determined using gas chromatography. Number and weight average molecular weights (Mn and Mw) and polydispersity index (PDI) were also evaluated by gel permeationchromatography. According to the results, addition of 3 wt% MCM–41 nanoparticles into the polymerization media resulted in lowering conversion from 81 to 58% in the AGET ATRP system. Moreover, a reduction in the molecular weight of the products from 17116 to 12798 g/mol was also occurred, although, the polydispersity index increased from 1.24 to 1.58. The similar results were also obtained by ARGET ATRP system; lowering conversion from 69 to 43% and molecular weight from 14892 to 9297 g/mol, and an increase of PDI from 1.14 to 1.41. The improvement in thermal stability of the nanocomposites, as a result of higher MCM–41 nanoparticles loading, was confirmed by thermogravimetric analysis. In addition, according to the analytical results of differential scanning calorimetry, a decrease in glass transition temperature, due to the addition of 3 wt% of MCM–41 nanoparticles (from 100.1 to 91.5°C in AGET ATRP system and from 100.3 to 85.8°C in ARGET ATRP), was achieved

    Study of Slurry Ethylene Polymerization with Ziegler-Natta Catalysts: Kinetics and Investigation on the Rate of Monomer Consumption Equation

    No full text
    In the current work, ethylene polymerization was investigated from a mathematical modeling point of view. The initiation (activation), propagation, termination, and deactivation reactions were taken into account and the relevant equations used in the modeling were obtained from the elementary reactions. Some assumptions including neglecting the transfer and deactivation reactions were considered to simplify the modeling. According to the results obtained, these assumptions were only applicable to the initial stages of the polymerization reaction, namely the first 20 min of the reaction.Finally, transfer to monomer and deactivation reaction was also included in the improved version of the model and a new equation acceptably matching the experimental results was developed for the rate of the polymerization

    Effect of Pluronic Introduction to Polycaprolactone Substrate on the Blend Hydrophilicity by Molecular Dynamic Simulation

    No full text
    Poly()ε-caprolactone) ()PCL) has been widely investigated for medical applications because of its good physicochemical properties; however hydrophobic nature of PCL has been a colossal obstacle toward achieving scaffolds which offer satisfactory cell attachment and proliferation. To date, different methods have been proposed to lower the hydrophobicity of PCL. Moreover, molecular dynamic simulation (MD) is an excellent method to predict and study the chemical and physical properties of polymeric systems. To this end, MD study was assigned to evaluate the PCL/Pluronic blend. Moreover, some experimental data on PCL/Pluronic blend were collected and compared with the simulated results. Thermodynamic properties of neat and blended PCL were also calculated using MD simulation. The blend of PCL/Pluronic possessed lower density and higher free volume in comparison with neat PCL because of high mobility and low glass transition temperature of Pluronic chains and due to good molecular interactions between polypropylene oxide blocks of Pluronic and PCL. The ratio of the bulk to shear modulus revealed a toughened PCL blended substrate in comparison to its pure form. Moreover, a high interaction energy between the PCL/Pluronic blend and water molecules was observed due to the thermodynamically favored interactions of polyethylene oxide blocks of Pluronic and water molecules. Mean square displacement of water molecules at the bulk and in the surface of water layer placed in the vicinity of neat and blended PCL was calculated. The results revealed a difference between the behavior of the bulk and interfacial water molecules. Water contact angle measurements were carried out in order to evaluate the simulation results and demonstrated a considerable improvement in hydrophilicity of the PCL thin layers when blended with Pluronic

    Adsorption kinetics of methylene blue from wastewater using pH-sensitive starch-based hydrogels

    No full text
    Abstract In this work, starch/poly(acylic acid) hydrogels were synthesized through a free radical polymerization technique. The molar ratios of acrylic acid to N,N′-methylenebisacrylamide were 95:5, 94:6, and 93:7. The samples exhibited an amorphous porous structure, indicating that the size of the pores was contingent upon the amount of cross-linking agent. The quantity of acrylic acid in structure rose with a little increase in the amount of the cross-linking agent, which improved the hydrogels’ heat stability. The swelling characteristics of the hydrogels were influenced by both the pH level and the amount of cross-linking agent. The hydrogel with a ratio of 94:6 exhibited the highest degree of swelling (201.90%) at a pH of 7.4. The dominance of the Fickian effect in regulating water absorption in the synthesized hydrogels was demonstrated, and the kinetics of swelling exhibited agreement with Schott's pseudo-second order model. The absorption of methylene blue by the hydrogels that were developed was found to be influenced by various factors, including the concentration of the dye, the quantity of the cross-linking agent, the pH level, and the duration of exposure. The hydrogel 95:5 exhibited the highest adsorption effectiveness (66.7%) for the dye solution with a concentration of 20 mg/L at pH 10.0. The examination of the kinetics and isotherms of adsorption has provided evidence that the process of physisorption takes place on heterogeneous adsorbent surfaces and can be explained by an exothermic nature

    Atom Transfer Radical Polymerization of Styrene in Presence of Mesoporous Silica Nanoparticles: Application of Reverse, Simultaneous Reverse and Normal Initiation Techniques

    No full text
    Atom transfer radical polymerization (ATRP) of styrene in presence of mesoporous silica nanoparticles was carried out at 110 °C. Reverse atom transfer radical polymerization (RATRP) and simultaneous reverse and normal initiation for atom transfer radical polymerization (SR&NI ATRP) techniques were used as two appropriate introduced techniques for circumventing oxidation problems. Usage of metal catalyst in its higher oxidation state was the main feature of these initiation techniques in which deficiencies of normal ATRP were circumvented. Structure, surface area and pore diameter of synthesized mesoporous silica nanoparticles were evaluated using X–ray diffraction and nitrogen adsorption/desorption isotherm analysis. Average particle size was estimated around 600 nm by electron microscopy images. In addition, according to these images, nanoparticles revealed an appropriate size distribution. Particles size and their distribution were examined using scanning. Final monomer conversion was determined by using gas chromatography. The number and weight average molecular weights (Mn and Mw) and polydispersity indexes (PDI) were also evaluated by gel permeation chromatography. According to the results obtained, addition of mesoporous silica nanoparticles in both RATRP and SR&NI ATRP systems revealed similar effects: decrement of conversion and Mn and also increment of PDI values observed by increasing of mesoporous silica nanoparticles content. Improvement in thermal stability of the nanocomposites in comparison with neat polystyrene was demonstrated by thermogravimetric analysis (TGA). Moreover, in case of nanocomposites, thermal stability was obtained by higher loading of nanoparticles. A decrease in glass transition temperature by higher content of mesoporous silica nanoparticles has been demonstrated by differential scanning calorimetry analysis

    Study of Atom Transfer Radical Polymerization of Styrene and Its Gel Effect by Monte Carlo Simulation Method

    No full text
    Atom transfer radical polymerization (ATRP) of styrene was carried out at 105°C and a Monte Carlo simulation was employed to model the system. The variations of monomer conversion, the initiator concentration, average molecular weight, and molecular weight distribution were evaluated as the reaction proceeded. According to the results obtained, for similar reaction time, monomer conversion is higher when gel effect is taken into account. Also, the concentration of initiator suddenly drops at the initial stages of polymerization, and finally reaches zero. In addition, in the presence of gel effect, bimolecular termination rate constant decreases during the polymerization. Moreover, number- and weight-average molecular weights linearly rise as the polymerization progresses; this also is a confirmation to the living nature of the polymerization. Finally, the molecular weight distribution of polymers synthesized narrows at high monomer conversion. In effect, polydispersity index decreases from about 2 (at the onset of polymerization) to around 1.3 (towards the end of polymerization)

    Employing Moment Equations Model to Study the Effect of Different Active Centers on Homopolymerization Kinetics of Ethylene

    No full text
    Ethylene was homopolymerized over Ziegler-Natta catalyst and the homopolymerization was modeled using moment equations. Mechanism was modeled according to five different reaction centers of catalyst. For each center, there are different reaction rate coefficients; therefore the final product of each center would be expected to be different. Modeling results showed good conformity to the experimental results. According to the results obtained, the molecular weight distribution of each active center follows a Schultz-Flory distribution. However, the molecular weight distribution ofpolymer produced is much broader than a Schultz-Flory distribution. Besides, the order of polymerization with regards to monomer concentration is different for each center and it is higher than unity. Moreover, the catalyst active centers deteriorate in the presence of hydrogen and consequently catalyst yield drops. Nevertheless, polymerization kinetics is not affected much by hydrogen. Hydrogen also reduces polymer molecular weight since it is a strong transfer agent in olefin polymerizations. Notwithstanding, it does not affect polydispersity index. Finally, by increasing the cocatalyst concentration the activity of active centers is not changed, while it lessens the molecular weight as a transfer agent
    corecore