128 research outputs found
Optical properties monitor: Experiment definition phase
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination
Performance of the Center-Of-Curvature Optical Assembly During Cryogenic Testing of the James Webb Space Telescope
The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 meters in diameter and consists of 18 hexagonal segments, each 1.5 meters point-to-point. Each segment has a 6 degree-of-freedom hexapod actuation system and a radius-of-curvature (ROC) actuation system. The full telescope was tested at its cryogenic operating temperature at Johnson Space Center (JSC) in 2017. This testing included center-of-curvature measurements of the PM wavefront error using the Center-of-Curvature Optical Assembly (COCOA), along with the Absolute Distance Meter Assembly (ADMA). The COCOA included an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer was used to enable alignment and phasing of the PM segments. By combining measurements at two laser wavelengths, synthetic wavelengths up to 15 millimeters could be achieved, allowing mirror segments with millimeter-level piston errors to be phased to the nanometer level. The ADMA was used to measure and set the spacing between the PM and the focus of the COCOA null (i.e., the PM center-of-curvature) for determination of the ROC. This paper describes the COCOA, the PM test setup, the testing performed, the test results, and the performance of the COCOA in aligning & phasing the PM segments and measuring the final PM wavefront error
JWST Pathfinder Telescope Risk Reduction Cryo Test Program
In 2014, the Optical Ground Support Equipment was integrated into the large cryo vacuum chamber at Johnson Space Center (JSC) and an initial Chamber Commissioning Test was completed. This insured that the support equipment was ready for the three Pathfinder telescope cryo tests. The Pathfinder telescope which consists of two primary mirror segment assemblies and the secondary mirror was delivered to JSC in February 2015 in support of this critical risk reduction test program prior to the flight hardware. This paper will detail the Chamber Commissioning and first optical test of the JWST Pathfinder telescope
- …