27 research outputs found

    Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements

    Get PDF
    This article is based upon COST Action CA16215 and supported by the ERDF , European-Union Project No.1.1.1.2/16/I/001.We demonstrate a low-cost standalone portable spectrophotometer for fast and reliable measurement execution. The data acquired can be both displayed via a dedicated smartphone application or a computer interface, allowing users either to gather and view data on the move or set up a continuous experiment. All design and software files are open-source and are intended for the device to be easily replicable and further customizable to suit specific applications. The assembled device can measure absorption in the wavelength range from 450 nm to 750 nm with a resolution of 15 nm and is housed in a 90 × 85 × 58 mm casing. Validation of the device was carried out by assessing wavelength accuracy, dynamic range and the signal-to-noise ratio of the system, followed by testing in three different applications where limit of quantification, limit of detection and relative standard deviations were determined. The results indicated better performance than low-cost spectrophotometers, on average being comparable to moderate to high-cost spectrophotometers.European Regional Development Fund 1.1.1.2/16/I/001; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART²https://www.sciencedirect.com/science/article/pii/S246806722030016

    The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Clozapine (CLZ), a dibenzodiazepine, is demonstrated as the optimal antipsychotic for patients suffering from treatment-resistant schizophrenia. Like many other drugs, understanding the concentration of CLZ in a patient’s blood is critical for managing the patients’ symptoms, side effects, and overall treatment efficacy. To that end, various electrochemical techniques have been adapted due to their capabilities in concentration-dependent sensing. An open question associated with electrochemical CLZ monitoring is whether drug–protein complexes (i.e., CLZ bound to native blood proteins, such as serum albumin (SA) or alpha-1 acid-glycoprotein (AAG)) contribute to electrochemical redox signals. Here, we investigate CLZ-sensing performance using fundamental electrochemical methods with respect to the impact of protein binding. Specifically, we test the activity of bound and free fractions of a mixture of CLZ and either bovine SA or human AAG. Results suggest that bound complexes do not significantly contribute to the electrochemical signal for mixtures of CLZ with AAG or SA. Moreover, the fraction of CLZ bound to protein is relatively constant at 31% (AAG) and 73% (SA) in isolation with varying concentrations of CLZ. Thus, electrochemical sensing can enable direct monitoring of only the unbound CLZ, previously only accessible via equilibrium dialysis. The methods utilized in this work offer potential as a blueprint in developing electrochemical sensors for application to other redox-active medications with high protein binding more generally. This demonstrates that electrochemical sensing can be a new tool in accessing information not easily available previously, useful toward optimizing treatment regimens

    Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect

    Get PDF
    Funding for Open Access provided by the UMD Libraries Open Access Publishing Fund.BACKGROUND/OBJECTIVES: The use of electric fields in combination with small doses of antibiotics for enhanced treatment of biofilms is termed the ‘bioelectric effect’ (BE). Different mechanisms of action for the AC and DC fields have been reported in the literature over the last two decades. In this work, we conduct the first study on the correlation between the electrical energy and the treatment efficacy of the bioelectric effect on Escherichia coli K-12 W3110 biofilms. METHODS: A thorough study was performed through the application of alternating (AC), direct (DC) and superimposed (SP) potentials of different amplitudes on mature E. coli biofilms. The electric fields were applied in combination with the antibiotic gentamicin (10 μg/ml) over a course of 24 h, after the biofilms had matured for 24 h. The biofilms were analysed using the crystal violet assay, the colony-forming unit method and fluorescence microscopy. RESULTS: Results show that there is no statistical difference in treatment efficacy between the DC-, AC- and SP-based BE treatment of equivalent energies (analysis of variance (ANOVA) P > 0.05) for voltages < 1 V. We also demonstrate that the efficacy of the BE treatment as measured by the crystal violet staining method and colony-forming unit assay is proportional to the electrical energy applied (ANOVA P < 0.05). We further verify that the treatment efficacy varies linearly with the energy of the BE treatment (r2 = 0.984). Our results thus suggest that the energy of the electrical signal is the primary factor in determining the efficacy of the BE treatment, at potentials less than the media electrolysis voltage. CONCLUSIONS: Our results demonstrate that the energy of the electrical signal, and not the type of electrical signal (AC or DC or SP), is the key to determine the efficacy of the BE treatment. We anticipate that this observation will pave the way for further understanding of the mechanism of action of the BE treatment method and may open new doors to the use of electric fields in the treatment of bacterial biofilms

    Diffusion- and Chemometric-Based Separation of Complex Electrochemical Signals That Originated from Multiple Redox-Active Molecules

    No full text
    In situ analysis of multiple biomarkers in the body provides better diagnosis and enables personalized health management. Since many of these biomarkers are redox-active, electrochemical sensors have shown promising analytical capabilities to measure multiple redox-active molecules. However, the analytical performance of electrochemical sensors rapidly decreases in the presence of multicomponent biofluids due to their limited ability to separate overlapping electrochemical signals generated by multiple molecules. Here we report a novel approach to use charged chitosan-modified electrodes to alter the diffusion of ascorbic acid, clozapine, L-homocysteine, and uric acid&mdash;test molecules with various molecular charges and molecular weights. Moreover, we present a complementary approach to use chemometrics to decipher the complex set of overlapping signals generated from a mixture of differentially charged redox molecules. The partial least square regression model predicted three out of four redox-active molecules with root mean square error, Pearson correlation coefficient, and R-squared values of 125 &micro;M, 0.947, and 0.894; 51.8 &micro;M, 0.877, and 0.753; 55.7 &micro;M, 0.903, and 0.809, respectively. By further enhancing our understanding of the diffusion of redox-active molecules in chitosan, the in-situ separation of multiple molecules can be enabled, which will be used to establish guidelines for the effective separation of biomarkers

    Electrochemical Determination of Hydroxyurea in a Complex Biological Matrix Using MoS2-Modified Electrodes and Chemometrics

    No full text
    Hydroxyurea, an oral medication with important clinical benefits in the treatment of sickle cell anemia, can be accurately determined in plasma with a transition metal dichalcogenide-based electrochemical sensor. We used a two-dimensional molybdenum sulfide material (MoS2) selectively electrodeposited on a polycrystalline gold electrode via tailored waveform polarization in the gold electrical double layer formation region. The electro-activity of the modified electrode depends on the electrical waveform parameters used to electro-deposit MoS2. The concomitant oxidation of the MoS2 material during its electrodeposition allows for the tuning of the sensor&rsquo;s specificity. Chemometrics, utilizing mathematical procedures such as principal component analysis and multivariable partial least square regression, were used to process the electrochemical data generated at the bare and the modified electrodes, thus allowing the hydroxyurea concentrations to be predicted in human plasma. A limit-of-detection of 22 nM and a sensitivity of 37 nA cm&minus;2 &micro;M&minus;1 were found to be suitable for pharmaceutical and clinical applications

    Fetal and Perinatal Outcome Following First and Second Trimester COVID-19 Infection: Evidence from a Prospective Cohort Study

    No full text
    A novel coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus causing coronavirus disease 2019 (COVID-19) disease, which emerged as a global pandemic. Data regarding the implications of COVID-19 disease at early gestation on fetal and obstetric outcomes is scarce. Thus, our aim was to investigate the effect of first and second trimester maternal COVID-19 disease on fetal and perinatal outcomes. This was a prospective cohort study of pregnant women with a laboratory-proven SARS-COV-2 infection contracted prior to 26 weeks gestation. Women were followed at a single tertiary medical center by serial sonographic examinations every 4–6 weeks to assess fetal well-being, growth, placental function, anatomic evaluation and signs of fetal infection. Amniocentesis was offered to assess amniotic fluid SARS-COV-2-PCR (polymerase chain reaction) and fetal brain magnetic resonance imaging (MRI) was offered at 30–32 weeks gestation. Demographic, obstetric and neonatal data were collected from history intake, medical charts or by telephone survey. Perinatal outcomes were compared between women infected at first vs. second trimester. 55 women with documented COVID-19 disease at early gestation were included and followed at our center. The mean maternal age was 29.6 ± 6.2 years and the mean gestational age at viral infection was 14.2 ± 6.7 weeks with 28 (51%) women infected at the first trimester and 27 (49%) at the second trimester. All patients but one experienced asymptomatic to mild symptoms. Of 22 patients who underwent amniocentesis, none had evidence of vertical transmission. None of the fetuses exhibited signs of central nervous system (CNS) disease, growth restriction and placental dysfunction on serial ultrasound examinations and fetal MRI. Pregnancies resulted in perinatal survival of 100% to date with mean gestational age at delivery of 38.6 ± 3.0 weeks and preterm birth &lt;37 weeks rate of 3.4%. The mean birthweight was 3260 ± 411 g with no cases of small for gestational age infants. The obstetric and neonatal outcomes were similar among first vs. second trimester infection groups. We conclude SARS-CoV-2 infection at early gestation was not associated with vertical transmission and resulted in favorable obstetric and neonatal outcomes
    corecore