3 research outputs found

    Molecular Characterization of Nepali Potato Cultivars Using Randomly Amplified Polymorphic DNA (Rapd) Markers

    Full text link
    Randomly amplified polymorphic DNA (RAPD) was used to study the genetic diversity of four local cultivars of potato. Amplification with ten arbitrary decamer primers produced 29 different marker bands of which 69.0% were polymorphic. The size range of the amplified DNAs ranged between 370 bp and 2500 bp. On average, 17.5 alleles per genotype were amplified using the RAPD primers. With the selected primers sufficient polymorphism could be detected to allow identification of individual genotypes. A dendrogram displaying the relative genetic similarities between the genotypes showed a range of 55.2-69.0% similarity

    Dynamic regulation of transcription factors by nucleosome remodeling

    No full text
    Abstract The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes
    corecore