51 research outputs found

    Baryon polarization in low-energy unpolarized meson-baryon scattering

    Full text link
    We compute the polarization of the final-state baryon, in its rest frame, in low-energy meson--baryon scattering with unpolarized initial state, in Unitarized BChPT. Free parameters are determined by fitting total and differential cross-section data (and spin-asymmetry or polarization data if available) for pK−pK^-, pK+pK^+ and pπ+p\pi^+ scattering. We also compare our results with those of leading-order BChPT

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Linking earth observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives

    Get PDF
    Impacts of human civilization on ecosystems threaten global biodiversity. In a changing environment, traditional in situ approaches to biodiversity monitoring have made significant steps forward to quantify and evaluate BD at many scales but still, these methods are limited to comparatively small areas. Earth observation (EO) techniques may provide a solution to overcome this shortcoming by measuring entities of interest at different spatial and temporal scales. This paper provides a comprehensive overview of the role of EO to detect, describe, explain, predict and assess biodiversity. Here, we focus on three main aspects related to biodiversity − taxonomic diversity, functional diversity and structural diversity, which integrate different levels of organization − molecular, genetic, individual, species, populations, communities, biomes, ecosystems and landscapes. In particular, we discuss the recording of taxonomic elements of biodiversity through the identification of animal and plant species. We highlight the importance of the spectral traits (ST) and spectral trait variations (STV) concept for EO-based biodiversity research. Furthermore we provide examples of spectral traits/spectral trait variations used in EO applications for quantifying taxonomic diversity, functional diversity and structural diversity. We discuss the use of EO to monitor biodiversity and habitat quality using different remote-sensing techniques. Finally, we suggest specifically important steps for a better integration of EO in biodiversity research. EO methods represent an affordable, repeatable and comparable method for measuring, describing, explaining and modelling taxonomic, functional and structural diversity. Upcoming sensor developments will provide opportunities to quantify spectral traits, currently not detectable with EO, and will surely help to describe biodiversity in more detail. Therefore, new concepts are needed to tightly integrate EO sensor networks with the identification of biodiversity. This will mean taking completely new directions in the future to link complex, large data, different approaches and models

    Ecologia populacional dos Amphipoda (Crustacea) dos fitais de Caiobá, Matinhos, Paraná, Brasil Population ecolocy of Amphipoda (Crustacea) from the phytals of Caiobá, Matinhos, Paraná, Brazil

    No full text
    <abstract language="eng">Spalial and temporal density distributions of Amphipoda from the phytals of Caiobá are described. Air temperature oscillated from 16ºC (August and May) to 23ºC (March), surface water temperature from 17ºC (August) to 25ºC (March) and the salinity from 29.3‰ (May) to 32.8‰ (August). Two samples of 25cm² (for algae less than 5cm long), 100 cm² (for algae between 5-10cm long) and whole plants (for algae more than 10cm long) were removed with a spatula from the rocky surface at Caiobá Beach, in August/86, November/86, March/87 and May/87. After sorting, the algal substrata were weighted, their adsorption coefficient calculated and the sediment retained among the thallii weighted. The average distance between the branching was measured for all branched algae. The densities were calculated in relation to the weight of the algal substrate in grams. Eight phytals were considered: Ulva fasciata Delile, Padina gymnospora (Kútzing) Vickers, Sargassum cymosum Garth, Porphyra atropurpurea (Olivi) De Toni, Gelidium sp., Gymnogongrus griffithsiae (Turner) Martius, Pterocladia capillacea (Gmelin) Bornet &Thurel and Pterosiphonia pennata (Roth) Falkenberg, over which nine Amphipoda species live: Ampithoe ramondi Audouin, 1816, Cymadusa filosa Savigny, 1852, Elasmopus pectenicrus Bate, 1857, Hyale media Dana, 1857, Hyale sp.l, Jassa falcata Montagu, 1895 and Sunampithoe pelagica H. Milne-Edwards, 1830 (Gammaridea). Caprella danilevskii Czerniavski, 1861 and Caprella penantis Leach, 1814 (Caprellidea). Amphipoda densities ranged from 0.27 ind.g-1 to 45.68. ind.g-1. The broad-thallii algae Porphyra, Ulva and Padina harbored lower densities of Amphipoda, whereas those finely branched Pterocladia, Pterosiphonia and Gymnogongrus, the highest values and the less branched Sargassum and Gelidium, intermediate values. The high densities found in the finely branched algae had as main contribution the juvenile recruiting of most Amphipoda. The tide level might have influenced the temporal distribution of the Amphipoda density, due to the distinct time of air exposition in eaeh collection data. Most Amphipoda did not show specific algal substratum colonization: only Sunampithoe pelagica occurred solely in Sargassum. Four species occurred in different branched algae: J. falcata. S. pelagica. C. danilevskii and C. penantis. H. media had Sargassum, Pterocladia, Pterosiphonia and Gymnogongrus as the best algal substrata, whereas Caprellidea, the Pterocladia and Pterosiphonia phytals. High sediment weight in Padina was the main reason for high densities of Hyale sp.l in this phytal. The occurrence of males, females (including ovigerous ones) and juveniles of most Amphipoda species found in the present study indicates a complete life cycle whithin these phytals and corroborates with the assumption of the complexity of this marine coastal ecosystem
    • …
    corecore