170 research outputs found

    Role of protein kinase C in inhibition of renin release caused by vasoconstrictors

    Get PDF
    It was the aim of the present study to get insight into some of the intracellular mechanisms by which the vasoconstrictor hormones angiotensin II (ANG II), arginine vasopressin (AVP), and norepinephrine (NE) inhibit renin release from renal juxtaglomerular cells. To this end a primary cell culture from rat renal cortex was established that consisted of 50% juxtaglomerular cells. The cultured juxtaglomerular cells contained prominent renin granules closely resembling those in the intact kidney and responded to a number of stimuli of renin release. By using these cultures, we found that ANG II (10(-7) M), AVP (10(-6) M), and NE (10(-5) M) inhibited renin release and increased the calcium permeability of the plasma membrane of the cultured cells. Both the effects on renin release and on calcium permeability could be diminished or even be abolished by the calcium channel blocker verapamil (Vp) (10(-5) M). ANG II, AVP, and NE led to an increased formation of diacylglycerol (DAG), a well-known stimulator of protein kinase C (PKC). Moreover, a direct stimulation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) (10(-8)-10(-6) M) also inhibited renin release and increased the calcium permeability of the cell membrane. Similar to ANG II, AVP, and NE, the effects of TPA on calcium permeability and renin release could be diminished by Vp. In conclusion, these results point toward a common mechanism by which vasoconstrictors inhibit renin release from renal juxtaglomerular cells: ANG II, AVP, and NE activate a phospholipase C, which generates DAG.(ABSTRACT TRUNCATED AT 250 WORDS

    New roles for renin and prorenin in heart failure and cardiorenal crosstalk

    Get PDF
    The renin-angiotensin-aldosterone-system (RAAS) plays a central role in the pathophysiology of heart failure and cardiorenal interaction. Drugs interfering in the RAAS form the pillars in treatment of heart failure and cardiorenal syndrome. Although RAAS inhibitors improve prognosis, heart failure–associated morbidity and mortality remain high, especially in the presence of kidney disease. The effect of RAAS blockade may be limited due to the loss of an inhibitory feedback of angiotensin II on renin production. The subsequent increase in prorenin and renin may activate several alternative pathways. These include the recently discovered (pro-) renin receptor, angiotensin II escape via chymase and cathepsin, and the formation of various angiotensin subforms upstream from the blockade, including angiotensin 1–7, angiotensin III, and angiotensin IV. Recently, the direct renin inhibitor aliskiren has been proven effective in reducing plasma renin activity (PRA) and appears to provide additional (tissue) RAAS blockade on top of angiotensin-converting enzyme and angiotensin receptor blockers, underscoring the important role of renin, even (or more so) under adequate RAAS blockade. Reducing PRA however occurs at the expense of an increase plasma renin concentration (PRC). PRC may exert direct effects independent of PRA through the recently discovered (pro-) renin receptor. Additional novel possibilities to interfere in the RAAS, for instance using vitamin D receptor activation, as well as the increased knowledge on alternative pathways, have revived the question on how ideal RAAS-guided therapy should be implemented. Renin and prorenin are pivotal since these are at the base of all of these pathways

    No evidence for product inhibition of the renin-angiotensinogen reaction in the rat

    No full text
    The influence of the product of the renin-angiotensinogen reaction, the des-angiotensin I-substrate (des-AI-substrate) on the renin-angiotensinogen reaction has been studied. Des-AI-substrate was prepared from purified rat angiotensinogen by reaction with immobilized renin. The des-AI-substrate had no inhibitory effect on the reaction of partially purified rat renin with rat angiotensinogen at concentrations corresponding to 0.225 or 0.45 micrometer angiotensinogen

    Evidence against inhibition of the renin-angiotensinogen reaction by des-angiotensin substrate in the rat

    No full text
    1. The possible inhibitory effect of des-angiotensin I substrate on the renin-substrate reaction was studied. For this purpose rat angiotensinogen was purified 50-fool from plasma of nephrectomized rats. Des-angiotensin substrate was prepared from the purified angiotensinogen preparation by reaction with immobilized hog renin (coupled to Sepharose). 2. In kinetic experiments it was found that desangiotensin I substrate in concentrations of 0-225 and 0-45 micronmol/l has no influence on the reaction between rat renin and rat angiotensinogen
    corecore