10 research outputs found

    Proposing an International Standard Accident Number for Interconnecting Information and Communication Technology Systems of the Rescue Chain

    Get PDF
    Background  The rapid dissemination of smart devices within the internet of things (IoT) is developing toward automatic emergency alerts which are transmitted from machine to machine without human interaction. However, apart from individual projects concentrating on single types of accidents, there is no general methodology of connecting the standalone information and communication technology (ICT) systems involved in an accident: systems for alerting (e.g., smart home/car/wearable), systems in the responding stage (e.g., ambulance), and in the curing stage (e.g., hospital). Objectives  We define the International Standard Accident Number (ISAN) as a unique token for interconnecting these ICT systems and to provide embedded data describing the circumstances of an accident (time, position, and identifier of the alerting system). Materials and methods  Based on the characteristics of processes and ICT systems in emergency care, we derive technological, syntactic, and semantic requirements for the ISAN, and we analyze existing standards to be incorporated in the ISAN specification. Results  We choose a set of formats for describing the embedded data and give rules for their combination to generate an ISAN. It is a compact alphanumeric representation that is generated easily by the alerting system. We demonstrate generation, conversion, analysis, and visualization via representational state transfer (REST) services. Although ISAN targets machine-to-machine communication, we give examples of graphical user interfaces. Conclusion  Created either locally by the alerting IoT system or remotely using our RESTful service, the ISAN is a simple and flexible token that enables technological, syntactic, and semantic interoperability between all ICT systems in emergency care

    Automatic Information Exchange in the Early Rescue Chain Using the International Standard Accident Number (ISAN)

    Get PDF
    Thus far, emergency calls are answered by human operators who interview the calling person in order to obtain all relevant information. In the near future-based on the Internet of (Medical) Things (IoT, IoMT)-accidents, emergencies, or adverse health events will be reported automatically by smart homes, smart vehicles, or smart wearables, without any human in the loop. Several parties are involved in this communication: the alerting system, the rescue service (responding system), and the emergency department in the hospital (curing system). In many countries, these parties use isolated information and communication technology (ICT) systems. Previously, the International Standard Accident Number (ISAN) has been proposed to securely link the data in these systems. In this work, we propose an ISAN-based communication platform that allows semantically interoperable information exchange. Our aims are threefold: (i) to enable data exchange between the isolated systems, (ii) to avoid data misinterpretation, and (iii) to integrate additional data sources. The suggested platform is composed of an alerting, responding, and curing system manager, a workflow manager, and a communication manager. First, the ICT systems of all parties in the early rescue chain register with their according system manager, which tracks the keep-alive. In case of emergency, the alerting system sends an ISAN to the platform. The responsible rescue services and hospitals are determined and interconnected for platform-based communication. Next to the conceptual design of the platform, we evaluate a proof-of-concept implementation according to (1) the registration, (2) channel establishment, (3) data encryption, (4) event alert, and (5) information exchange. Our concept meets the requirements for scalability, error handling, and information security. In the future, it will be used to implement a virtual accident registry

    The Digital Calibration Certificate (DCC) for an End-to-End Digital Quality Infrastructure for Industry 4.0

    No full text
    This article depicts the role of the Digital Calibration Certificate (DCC) for an end-to-end digital quality infrastructure and as the basis for developments that are designated by the keyword “Industry 4.0”. Furthermore, it describes the impact the DCC has on increasing productivity in the manufacturing of products and in global trade. The DCC project is international in its scope. Calibration certificates document the measurement capability of a measurement system. They do this independently and by providing traceability to measurement standards. Therefore, they do not only play an important role in the world of metrology, but they also make it possible for manufacturing and commercial enterprises to exchange measurement values reliably and correctly at the national and at the international level. Thus, a DCC concept is urgently needed for the end-to-end digitalization of industry for the era of Industry 4.0 and for Medicine 4.0. A DCC brings about important advantages for issuers and for users. The DCC leads to the stringent, end-to-end, traceable and process-oriented organization of manufacturing and trading. Digitalization is thus a key factor in the field of calibration as it enables significant improvements in product and process quality. The reason for this is that the transmission of errors will be prevented, and consequently, costs will be saved as the time needed for distributing and disseminating the DCCs and the respective calibration objects will be reduced. Furthermore, it will no longer be necessary for the test equipment administration staff to update the data manually, which is a time-consuming, tedious and error-prone process
    corecore