11 research outputs found

    Recommendations for Clinical CYP2C19 Genotyping Allele Selection: A Report of the Association for Molecular Pathology

    Get PDF
    This document was developed by the Pharmacogenetics (PGx) Working Group of the Association for Molecular Pathology Clinical Practice Committee, whose aim is to recommend variants for inclusion in clinical pharmacogenetic testing panels. The goals of the Association for Molecular Pathology PGx Working Group are to define the key attributes of PGx alleles recommended for clinical testing and to define a minimum set of variants that should be included in clinical PGx genotyping assays. These recommendations include a minimum panel of variant alleles (tier 1) and an extended panel of variant alleles (tier 2) that will aid clinical laboratories when designing PGx assays. The Working Group considered variant allele frequencies in different populations and ethnicities, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. These CYP2C19 genotyping recommendations are the first of a series of recommendations for PGx testing. These recommendations are not to be interpreted as restrictive, but they are meant to provide a helpful guide

    Recommendations for Clinical CYP2C9 Genotyping Allele Selection: A Joint Recommendation of the Association for Molecular Pathology and College of American Pathologists

    Get PDF
    The goals of the Association for Molecular Pathology Pharmacogenomics (PGx) Working Group of the Association for Molecular Pathology Clinical Practice Committee are to define the key attributes of PGx alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document provides recommendations for a minimum panel of variant alleles (Tier 1) and an extended panel of variant alleles (Tier 2) that will aid clinical laboratories when designing assays for CYP2C9 testing. The Working Group considered the functional impact of the variants, allele frequencies in different populations and ethnicities, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. Our goal is to promote standardization of testing PGx genes and alleles across clinical laboratories. These recommendations are not to be interpreted as restrictive but to provide a reference guide. The current document will focus on CYP2C9 testing that can be applied to all CYP2C9-related medications. A separate recommendation on warfarin PGx testing is being developed to include recommendations on CYP2C9 alleles and additional warfarin sensitivity–associated genes and alleles

    Pharmacogenetic allele nomenclature: International workgroup recommendations for test result reporting

    Get PDF
    This manuscript provides nomenclature recommendations developed by an international workgroup to increase transparency and standardization of pharmacogenetic (PGx) result reporting. Presently, sequence variants identified by PGx tests are described using different nomenclature systems. In addition, PGx analysis may detect different sets of variants for each gene, which can affect interpretation of results. This practice has caused confusion and may thereby impede the adoption of clinical PGx testing. Standardization is critical to move PGx forward

    A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database

    No full text
    <p>Abstract</p> <p>The Metabolism and Transport Drug Interaction Database (<url>http://www.druginteractioninfo.org</url>) is a web-based research and analysis tool developed in the Department of Pharmaceutics at the University of Washington. The database has the largest manually curated collection of data related to drug interactions in humans. The tool integrates information from the literature, public repositories, reference textbooks, guideline documents, product prescribing labels and clinical review sections of new drug approval (NDA) packages. The database's easy-to-use web portal offers tools for visualisation, reporting and filtering of information. The database helps scientists to mine kinetics information for drug-metabolising enzymes and transporters, to assess the extent of <it>in vivo </it>drug interaction studies, as well as case reports for drugs, therapeutic proteins, food products and herbal derivatives. This review provides a brief description of the database organisation, its search functionalities and examples of use.</p

    Antiepileptic drug selection for people with HIV/AIDS: Evidence-based guidelines from the ILAE and AAN

    No full text
    A joint panel of the American Academy of Neurology (AAN) and the International League Against Epilepsy (ILAE) convened to develop guidelines for selection of antiepileptic drugs (AEDs) among people with HIV/AIDS. The literature was systematically reviewed to assess the global burden of relevant comorbid entities, to determine the number of patients who potentially utilize AEDs and antiretroviral agents (ARVs), and to address AED-ARV interactions. Key findings from this literature search included the following: AED-ARV administration may be indicated in up to 55% of people taking ARVs. Patients receiving phenytoin may require a lopinavir/ritonavir dosage increase of approximately 50% to maintain unchanged serum concentrations (Level C). Patients receiving valproic acid may require a zidovudine dosage reduction to maintain unchanged serum zidovudine concentrations (Level C). Coadministration of valproic acid and efavirenz may not require efavirenz dosage adjustment (Level C). Patients receiving ritonavir/atazanavir may require a lamotrigine dosage increase of approximately 50% to maintain unchanged lamotrigine serum concentrations (Level C). Coadministration of raltegravir/atazanavir and lamotrigine may not require lamotrigine dosage adjustment (Level C). Coadministration of raltegravir and midazolam may not require midazolam dosage adjustment (Level C). Patients may be counseled that it is unclear whether dosage adjustment is necessary when other AEDs and ARVs are combined (Level U). It may be important to avoid enzyme-inducing AEDs in people on ARV regimens that include protease inhibitors or nonnucleoside reverse transcriptase inhibitors because pharmacokinetic interactions may result in virologic failure, which has clinical implications for disease progression and development of ARV resistance. If such regimens are required for seizure control, patients may be monitored through pharmacokinetic assessments to ensure efficacy of the ARV regimen (Level C)

    Recommendations for Clinical Warfarin Genotyping Allele Selection

    No full text
    The goal of the Association for Molecular Pathology (AMP) Clinical Practice Committee's AMP Pharmacogenomics (PGx) Working Group is to define the key attributes of PGx alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations for a minimum panel of variant alleles (tier 1) and an extended panel of variant alleles (tier 2) that will aid clinical laboratories when designing assays for PGx testing. The AMP PGx Working Group considered functional impact of the variants, allele frequencies in multiethnic populations, the availability of reference materials, as well as other technical considerations for PGx testing when developing these recommendations. The ultimate goal is to promote standardization of PGx gene/allele testing across clinical laboratories. These recommendations are not to be interpreted as prescriptive but to provide a reference guide. Of note, a separate article with recommendations for CYP2C9 allele selection was previously developed by the PGx Working Group that can be applied broadly to CYP2C9-related medications. The warfarin allele recommendations in this report incorporate the previous CYP2C9 allele recommendations and additional genes and alleles that are specific to warfarin testing

    <i>CYP3A4 </i>and <i>CYP3A5 </i>Genotyping Recommendations:A Joint Consensus Recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase

    No full text
    The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations for a minimum panel of variant alleles (tier 1) and an extended panel of variant alleles (tier 2) that will aid clinical laboratories when designing assays for PGx testing. The Association for Molecular Pathology PGx Working Group considered functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. The goal of this Working Group is to promote standardization of PGx gene/allele testing across clinical laboratories. This document will focus on clinical CYP3A4 and CYP3A5 PGx testing that may be applied to all CYP3A4- and CYP3A5-related medications. These recommendations are not to be interpreted as prescriptive but to provide a reference guide.</p

    TPMT and NUDT15 Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase

    No full text
    The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This article provides recommendations for a minimum panel of variant alleles (Tier 1) and an extended panel of variant alleles (Tier 2) that will aid clinical laboratories when designing assays for PGx testing. The Association for Molecular Pathology PGx Working Group considered the functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, as well as other technical considerations for PGx testing when developing these recommendations. The ultimate goal of this Working Group is to promote standardization of PGx gene/allele testing across clinical laboratories. This article focuses on clinical TPMT and NUDT15 PGx testing, which may be applied to all thiopurine S-methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15)-related medications. These recommendations are not to be interpreted as prescriptive, but to provide a reference guide

    Recommendations for Clinical CYP2D6 Genotyping Allele Selection

    Get PDF
    The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing, and to determine a minimal set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations on a minimal panel of variant alleles (Tier 1) and an extended panel of variant alleles (Tier 2) that will aid clinical laboratories in designing assays for PGx testing. When developing these recommendations, the Association for Molecular Pathology PGx Working Group considered the functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, as well as other technical considerations with regard to PGx testing. The ultimate goal of this Working Group is to promote standardization of PGx gene/allele testing across clinical laboratories. This document is focused on clinical CYP2D6 PGx testing that may be applied to all cytochrome P450 2D6–metabolized medications. These recommendations are not meant to be interpreted as prescriptive but to provide a reference guide for clinical laboratories that may be either implementing PGx testing or reviewing and updating their existing platform.</p

    DPYD Genotyping Recommendations:A Joint Consensus Recommendation of the Association for Molecular Pathology, American College of Medical Genetics and Genomics, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, Pharmacogenomics Knowledgebase, and Pharmacogene Variation Consortium

    No full text
    The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations for a minimum set of variant alleles (tier 1) and an extended list of variant alleles (tier 2) that will aid clinical laboratories when designing assays for PGx testing. The Association for Molecular Pathology PGx Working Group considered the functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. The goal of this Working Group is to promote standardization of PGx testing across clinical laboratories. This document will focus on clinical DPYD PGx testing that may be applied to all dihydropyrimidine dehydrogenase–related medications. These recommendations are not to be interpreted as prescriptive but to provide a reference guide.</p
    corecore