16 research outputs found

    The inhibition of HIV-1 activity by crude mucus and purified mucin (mucous glycoproteins) from saliva, breast milk and the cervical tract of normal subjects, HIV positive individuals and patients with HIV-AIDS

    Get PDF
    Includes bibliographical references (leaves 140-161).Human saliva, breast milk and cervical secretions contain several non-immunological components including mucins (mucous glycoproteins), which protect the gastrointesinal and female reproductive tracts and breast fed infants from bacterial, viral and fungal infections. In addition to their well known function in lubrication, tissue coating and digestion, mucus and mcins have been used as pathological markers in diseases such as asthma, chronic bronchitis, cystic fibrosis, and carcinomas of the breast, lung and colon. Crude saliva is a also known to inhibit the activity of human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). According to the joint United Nations Programme on HIV/AIDS (UNAIDS) worldwide an estimated 38.6 million people were living with HIV in 2005 with 401 million newly infected and 2.8 million deaths. It has been reported that an estimated 24.5 million of the HIV infected people of whom 60% females live in sub-Saharan Africa with the Southern African region having the highest prevalence in Africa. Furthermore the incidence of opportunistic diseases such as TB is also reported to increase with HIV prevalence. Thus far, despite the discovery of highly active antiretroviral therapies which contain both protease and reverse transcriptase inhibitors, HIV remains as a global threat especially to the third world countries. Therefore there is a need for the development of safe compounds to reduce viral loads in infected people and to prevent the transmission of the virus from one individual to another. The search for a suitable vaccine is ongoing

    Infectious bursal disease virus receptor identification with anti-peptide antibodies.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2004.Infectious bursal disease virus (IBDV) has a tropism for the lymphoid tissue of poultry and infects actively dividing and differentiating B-lymphocytes in the bursa of Fabricius. This results in a high mortality rate and severe immunosuppression. These immunodepressed chickens are highly susceptible to secondary infections and have a reduced capacity to respond to vaccination. The principal method to control IBDV is through extensive vaccination using either attenuated live or inactivated IBDV vaccines. However, in recent years due to the emergence of new virulent strains, risk of reversion to pathogenicity, cost considerations and intervention by maternal antibodies, the effectiveness of these vaccines in the veterinary field is being reduced. An alternative approach to prevent infection is by interfering with the binding of IBDV to its receptor protein on the surface of bursal cells. Hence this study was undertaken on the characterisation of a possible IBDV receptor on bursal membranes. Infectious bursal disease virus was isolated from infected bursal tissue using CsCl density gradient centrifugation and visualised with Tris-Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transmission electron microscopy. Following purification of double stranded RNA from infected bursal tissue and commercially available live IBDV vaccines, a polymerase chain reaction (PCR)-based diagnostic assay based on sequences from the highly conserved viral protein (VP2) region was performed. The presence of the virus was demonstrated by the amplification of a 150 bp band in 2% agarose and 15% nondenaturing PAGE gels. The correctness of this product was confirmed byrestriction digestion with a specific restriction endonuclease (BamHI) that resulted in the predicted digestion fragments of 93 and 57 bp. Following preparation of bursal membrane proteins from uninfected bursal tissue, using sucrose density gradient centrifugation, isolation of IBDV receptor protein was carried out by immobilising IBDV on a Sepharose 4B chromatography matrix. After affinity purification, two prominent protein bands around 40 kDa were visualised using a silver stained Tris-Tricine SDS-PAGE gel. Previous work in this laboratory identified two possible IBDV receptor proteins on bursal membranes of 32 and 40 kDa. Antibodies against peptide sequences derived from the 32 kDa receptor protein were raised in rabbits in the present study. These anti-IBDV receptor peptide antibodies recognised the affinity purified native 40 kDa IBDV receptor proteins in an enzyme-linked immunosorbent assay (ELISA). However, due to the possible epitope denaturation by the reducing treatment buffer prior to Tris-Tricine SDS-PAGE such as SDS and 2-mercapthethanol or detergent (Na-deoxycholate) used during the affinity purification of the IBDV receptor protein, the anti-IBDV receptor peptide antibody did not recognise the receptor protein on a western blot. An inhibition assay was performed in an ELISA format by coating the 40 kDa IBDV receptor protein to see if the anti-IBDV receptor peptide antibody could inhibit IBDV binding to the receptor. The result showed that the anti-IBDV receptor peptide antibody effectively inhibited the binding of IBDV to the receptor. This result could pave the way for reducing IBDV infection by interfering at the viral attachment stage prior to crossing the bursal cell membrane barrier

    Anti-HIV-1 activity of salivary MUC5B and MUC7 mucins from HIV patients with different CD4 counts

    Get PDF
    BACKGROUND: We have previously shown that MUC5B and MUC7 mucins from saliva of HIV negative individuals inhibit HIV-1 activity by 100% in an in vitro assay. The purpose of this subsequent study was to investigate whether MUC5B and MUC7 from saliva of HIV patients or with full blown AIDS had a similar inhibitory activity against the virus. METHODS: Salivary MUC5B and MUC7 from HIV patients with different CD4 counts ( 400) were incubated with HIV-1 prior to infection of the human T lymphoblastoid cell line (CEM SS cells). Cells were then cultured and viral replication was measured by a qualitative p24 antigen assay. The size, charge and immunoreactivity of mucins from HIV negative and positive individuals was also analysed by SDS-PAGE, Western blot and ELISA respectively. RESULTS: It was shown that irrespective of their CD4 counts both MUC5B and MUC7 from HIV patients, unlike the MUC5B and MUC7 from HIV negative individuals, did not inhibit HIV-1 activity. Size, charge and immunoreactivity differences between the mucins from HIV negative and positive individuals and among the mucins from HIV patients of different CD4 count was observed by SDS-PAGE, Western blot and ELISA. CONCLUSIONS: Purified salivary mucins from HIV positive patients do not inhibit the AIDS virus in an in vitro assay. Although the reason for the inability of mucins from infected individuals to inhibit the virus is not known, it is likely that there is an alteration of the glycosylation pattern, and therefore of charge of mucin, in HIV positive patients. The ability to inhibit the virus by aggregation by sugar chains is thus diminished

    The role of crude human saliva and purified salivary MUC5B and MUC7 mucins in the inhibition of Human Immunodeficiency Virus type 1 in an inhibition assay

    Get PDF
    BACKGROUND: Despite the continuous shedding of HIV infected blood into the oral cavity and the detectable presence of the AIDS virus at a high frequency, human saliva is reported to inhibit oral transmission of HIV through kissing, dental treatment, biting, and aerosolization. The purpose of this study was to purify salivary MUC5B and MUC7 mucins from crude saliva and determine their anti-HIV-1 activities. METHODS: Following Sepharose CL-4B column chromatography and caesium chloride isopycnic density-gradient ultra-centrifugation, the purity and identity of the mucins was determined by SDS-PAGE and Western blotting analysis respectively. Subsequently an HIV-1 inhibition assay was carried out to determine the anti-HIV-1 activity of the crude saliva and purified salivary mucins by incubating them with subtype D HIV-1 prior to infection of the CD4(+ )CEM SS cells. RESULTS: Western blotting analysis confirmed that the mucin in the void volume is MUC5B and the mucin in the included volume is MUC7. The HIV inhibition assay revealed that both the crude saliva and salivary MUC5B and MUC7 mucins inhibited HIV-1 activity by 100%. CONCLUSION: Although the mechanism of action is not clear the carbohydrate moieties of the salivary mucins may trap or aggregate the virus and prevent host cell entry

    The inhibition of the Human Immunodeficiency Virus type 1 activity by crude and purified human pregnancy plug mucus and mucins in an inhibition assay

    Get PDF
    Background: The female reproductive tract is amongst the main routes for Human Immunodeficiency Virus (HIV) transmission. Cervical mucus however is known to protect the female reproductive tract from bacterial invasion and fluid loss and regulates and facilitates sperm transport to the upper reproductive tract. The purpose of this study was to purify and characterize pregnancy plug mucins and determine their anti-HIV-1 activity in an HIV inhibition assay. Methods: Pregnancy plug mucins were purified by caesium chloride density-gradient ultra-centrifugation and characterized by Western blotting analysis. The anti-HIV-1 activities of the crude pregnancy plug mucus and purified pregnancy plug mucins was determined by incubating them with HIV-1 prior to infection of the human T lymphoblastoid cell line (CEM SS cells). Results: The pregnancy plug mucus had MUC1, MUC2, MUC5AC and MUC5B. The HIV inhibition assay revealed that while the purified pregnancy plug mucins inhibit HIV-1 activity by approximately 97.5%, the crude pregnancy plug mucus failed to inhibit HIV-1 activity. Conclusion: Although it is not clear why the crude sample did not inhibit HIV-1 activity, it may be that the amount of mucins in the crude pregnancy plug mucus (which contains water, mucins, lipids, nucleic acids, lactoferrin, lysozyme, immunoglobulins and ions), is insufficient to cause viral inhibition or aggregation.Peer Reviewe

    Mucus and Mucins: do they have a role in the inhibition of the human immunodeficiency virus?

    Get PDF
    Background: Mucins are large O-linked glycosylated proteins which give mucus their gel-forming properties. There are indications that mucus and mucins in saliva, breast milk and in the cervical plug inhibit the human immunodeficiency virus (HIV-1) in an in vitro assay. Main body of abstract: Crude mucus gels form continuous layers on the epithelial surfaces of the major internal tracts of the body and protect these epithelial surfaces against aggressive luminal factors such as hydrochloric acid and pepsin proteolysis in the stomach lumen, the movement of hard faecal pellets in the colon at high pressure, the effects of shear against the vaginal epithelium during intercourse and the presence of foreign substances in the respiratory airways. Tumour-associated epitopes on mucins make them suitable as immune-targets on malignant epithelial cells, rendering mucins important as diagnostic and prognostic markers for various diseases, even influencing the design of mucin-based vaccines. Sub-Saharan Africa has the highest prevalence of HIV-AIDS in the world. The main points of viral transmission are via the vaginal epithelium during sexual intercourse and mother-to-child transmission during breast-feeding. There have been many studies showing that several body fluids have components that prevent the transmission of HIV-1 from infected to non-infected persons through various forms of contact. Crude saliva and its purified mucins, MUC5B and MUC7, and the purified mucins from breast milk, MUC1 and MUC4 and pregnancy plug cervical mucus (MUC2, MUC5AC, MUC5B and MUC6), inhibit HIV-1 in an in vitro assay. There are conflicting reports of whether crude breast-milk inhibits HIV-1 in an in vitro assay. However studies with a humanised BLT mouse show that breast-milk does inhibit HIV and that breast-feeding is still advisable even amongst HIV-positive women in under-resourced areas, preferably in conjunction with anti-retroviral treatment. Conclusion: These findings raise questions of how such a naturally occurring biological substance such as mucus, with remarkable protective properties of epithelial surfaces against aggressive luminal factors in delicate locations, could be used as a tool in the fight against HIV-AIDS, which has reached epidemic proportions in sub-Saharan Africa

    Anti-HIV-1 activity of salivary MUC5B and MUC7 mucins from HIV patients with different CD4 counts

    No full text
    Abstract Background We have previously shown that MUC5B and MUC7 mucins from saliva of HIV negative individuals inhibit HIV-1 activity by 100% in an in vitro assay. The purpose of this subsequent study was to investigate whether MUC5B and MUC7 from saliva of HIV patients or with full blown AIDS had a similar inhibitory activity against the virus. Methods Salivary MUC5B and MUC7 from HIV patients with different CD4 counts ( 400) were incubated with HIV-1 prior to infection of the human T lymphoblastoid cell line (CEM SS cells). Cells were then cultured and viral replication was measured by a qualitative p24 antigen assay. The size, charge and immunoreactivity of mucins from HIV negative and positive individuals was also analysed by SDS-PAGE, Western blot and ELISA respectively. Results It was shown that irrespective of their CD4 counts both MUC5B and MUC7 from HIV patients, unlike the MUC5B and MUC7 from HIV negative individuals, did not inhibit HIV-1 activity. Size, charge and immunoreactivity differences between the mucins from HIV negative and positive individuals and among the mucins from HIV patients of different CD4 count was observed by SDS-PAGE, Western blot and ELISA. Conclusions Purified salivary mucins from HIV positive patients do not inhibit the AIDS virus in an in vitro assay. Although the reason for the inability of mucins from infected individuals to inhibit the virus is not known, it is likely that there is an alteration of the glycosylation pattern, and therefore of charge of mucin, in HIV positive patients. The ability to inhibit the virus by aggregation by sugar chains is thus diminished.</p
    corecore