8 research outputs found

    Evaluation and neurocomputational modelling of visual adaptation to optically induced distortions

    Get PDF
    Spatial geometrical distortions are major artefacts in vision aid optical spectacles. Progressive additional lenses (PALs) are among such spectacles incurring inherent distortions. Distortions alter perceived features of the natural environment and are one of the causes for visual discomforts, such as apparent motion perception and spatial disorientation, experienced by novice spectacle wearers. Thus, fast and efficient visual adaptation to the distortions is a necessity to increase the users’ comfort and consequently overcome the related problems, e.g. risk of fall in the elderly when using PALs. Inspired by this necessity, the work is targeted to investigate the visual mechanisms underlying adaptation to distortions, in particular in PALs. Psychophysical procedures are employed to probe the characteristics of the neural mechanisms underlying the adaptation process in natural viewing conditions. With psychophysical approaches, three main properties of distortion adaptation are revealed; its cortical origin, the reference frame in which it is achieved and its long-term temporal dynamics. In order to discern how the functional organization of neurons enables the visual system to carry out a robust distortion adaptation in a natural environment, biologically plausible recurrent neural network models are utilized. Prediction performance of model variants with different neural network complexity and temporal dynamics of operation were assessed. From the model simulations, major functional roles of recurrent bottom-up and top-down cortical interactions in neural response tuning and in mediating adaptation at different time scales were depicted. The outcomes would further contribute to suggest a solution for facilitating adaptation. The relevance of the research within these aforementioned studies is not restricted to PALs but extends to distortions in other daily used optical utilities, such as virtual reality (VR) displays. Optical distortions are also artefacts in artificial sensory systems, like lens distortions in cameras used in machine vision. Understanding the neural correlates of distortion adaptation in human vision will thereby elicit characteristic features of robust and flexible neural systems to be implemented in brain inspired artificial vision

    Model investigation on contribution of feedback in distortion induced motion adaptation

    Get PDF
    Motion information is processed in a neural circuit formed by synaptic organization of feedforward (FF) and feedback (FB) connections between different cortical areas. However, the contribution of a recurrent FB information to adaptation process is not well explored. Here, a biologically plausible neural model that predicts motion adaptation aftereffect (MAE) induced by exposure to geometrically skewed natural image sequences is suggested. The model constitutes two stage recurrent motion processing within cortical areas V1 and MT [1]. It comprises FF excitatory, FB modulatory and lateral inhibitory connections, and a fast and a slow adaptive synapse in the FF and FB streams, respectively, to introduce plasticity. Simulation results of the model show the following main contributions of FB in distortion induced motion adaptation: FB disambiguates the main signal from a noisy natural stimulus input: results in adaptation to globally consistent salient information. A model with distinct adaptive mechanisms in FF and FB streams predicts MAE at different time scales of exposure to skewed natural stimuli more accurately than other model variants constituting single adaptive mechanism: Multiple adaptive mechanisms might be implemented via FB pathways. FB allows similar response tuning in model area V1 and MT during adaptation in line with physiological findings [2]. [1] Bayerl, P. and H. Neumann, Disambiguating visual motion through contextual feedback modulation. Neural computation, 2004. 16(10): p. 2041-2066. [2] Patterson, C.A., et al., Similar adaptation effects in primary visual cortex and area MT of the macaque monkey under matched stimulus conditions. Journal of neurophysiology, 2013. 111(6): p. 1203-1213

    The Role of Bottom-Up and Top-Down Cortical Interactions in Adaptation to Natural Scene Statistics

    Get PDF
    Adaptation is a mechanism by which cortical neurons adjust their responses according to recently viewed stimuli. Visual information is processed in a circuit formed by feedforward (FF) and feedback (FB) synaptic connections of neurons in different cortical layers. Here, the functional role of FF-FB streams and their synaptic dynamics in adaptation to natural stimuli is assessed in psychophysics and neural model. We propose a cortical model which predicts psychophysically observed motion adaptation aftereffects (MAE) after exposure to geometrically distorted natural image sequences. The model comprises direction selective neurons in V1 and MT connected by recurrent FF and FB dynamic synapses. Psychophysically plausible model MAEs were obtained from synaptic changes within neurons tuned to salient direction signals of the broadband natural input. It is conceived that, motion disambiguation by FF-FB interactions is critical to encode this salient information. Moreover, only FF-FB dynamic synapses operating at distinct rates predicted psychophysical MAEs at different adaptation time-scales which could not be accounted for by single rate dynamic synapses in either of the streams. Recurrent FF-FB pathways thereby play a role during adaptation in a natural environment, specifically in inducing multilevel cortical plasticity to salient information and in mediating adaptation at different time-scales

    Transsaccadic transfer of distortion adaptation in a natural environment

    No full text

    Adaptation to Skew Distortions of Natural Scenes and Retinal Specificity of Its Aftereffects

    No full text
    Image skew is one of the prominent distortions that exist in optical elements, such as in spectacle lenses. The present study evaluates adaptation to image skew in dynamic natural images. Moreover, the cortical levels involved in skew coding were probed using retinal specificity of skew adaptation aftereffects. Left and right skewed natural image sequences were shown to observers as adapting stimuli. The point of subjective equality (PSE), i.e., the skew amplitude in simple geometrical patterns that is perceived to be unskewed, was used to quantify the aftereffect of each adapting skew direction. The PSE, in a two-alternative forced choice paradigm, shifted toward the adapting skew direction. Moreover, significant adaptation aftereffects were obtained not only at adapted, but also at non-adapted retinal locations during fixation. Skew adaptation information was transferred partially to non-adapted retinal locations. Thus, adaptation to skewed natural scenes induces coordinated plasticity in lower and higher cortical areas of the visual pathway

    Experience-dependent long-term facilitation of skew adaptation

    No full text
    corecore