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Adaptation is a mechanism by which cortical neurons adjust their responses according to

recently viewed stimuli. Visual information is processed in a circuit formed by feedforward

(FF) and feedback (FB) synaptic connections of neurons in different cortical layers. Here,

the functional role of FF-FB streams and their synaptic dynamics in adaptation to natural

stimuli is assessed in psychophysics and neural model. We propose a cortical model

which predicts psychophysically observed motion adaptation aftereffects (MAE) after

exposure to geometrically distorted natural image sequences. The model comprises

direction selective neurons in V1 and MT connected by recurrent FF and FB dynamic

synapses. Psychophysically plausible model MAEs were obtained from synaptic changes

within neurons tuned to salient direction signals of the broadband natural input. It is

conceived that, motion disambiguation by FF-FB interactions is critical to encode this

salient information. Moreover, only FF-FB dynamic synapses operating at distinct rates

predicted psychophysical MAEs at different adaptation time-scales which could not be

accounted for by single rate dynamic synapses in either of the streams. Recurrent FF-FB

pathways thereby play a role during adaptation in a natural environment, specifically in

inducing multilevel cortical plasticity to salient information and in mediating adaptation at

different time-scales.

Keywords: adaptation, visual system, distortions, dynamic synapses, motion, natural scenes,

feedforward-feedback pathways

INTRODUCTION

Our visual perception is always affected by what we have observed in the past. For instance,
after watching a moving entity after a prolonged amount of time, e.g., sea waves, stationary
objects appear to move. Neurons in the visual system decrease their sensitivity after prolonged
exposure to a specific type of visual input resulting in such concomitant perceptual modification for
subsequently viewed stimulus (Blakemore and Campbell, 1969;Mather et al., 1998; Fang et al., 2005;
Clifford et al., 2007). This experience dependent change in the visual system is called adaptation.
Adaptation has a key role for optimal and stable perception in a continuously changing natural
environment (Clifford et al., 2000; Kohn, 2007; Webster, 2011, 2015).
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The natural environment is characterized by large variations
of several attributes (Dong and Atick, 1995; Billock et al., 2001;
Betsch et al., 2004; Bex et al., 2005, 2007, 2009). The design of
the visual system is likely to mirror and efficiently compute the
statistical properties of these attributes (Eckert and Zeil, 2001;
Simoncelli, 2003; Kayser et al., 2004; Geisler, 2008; Snow et al.,
2017). Visual information is processed in a cortical circuit formed
by synaptic organization of feedforward (FF) and feedback (FB)
connections between different cortical areas (Sillito et al., 2006;
Mather et al., 2008; Stuit, 2009; Rokszin et al., 2010). One form of
FF-FB recurrent interaction is a driving FF input from lower to
higher cortical areas and a re-entrant modulatory FB enhancing
the input signal matching to responses of higher cortical areas
(Friston and Büchel, 2000; Hupe et al., 2001; Sillito et al., 2006).
The FB modulation acts as a prediction signal from higher to
lower cortical areas and allows propagation of disambiguated
signals through the network. This benefits to extract global salient
information from a noisy input during response normalization
process among a pool of neurons (Friston and Büchel, 2000;
Hupe et al., 2001; Sillito et al., 2006). Yet, the functional role
of FF-FB recurrent interaction is not resolved for adaptation
to features of the natural environment which are broadband
and noisy.

Another unexplored functional relevance of reciprocal visual
streams to adaptation is their synaptic dynamics. Activity
dependent changes in synaptic inputs are one of the underlying
mechanisms for adaptation (Abbott et al., 1997; Webster, 2015).
The visual system adapts to changes in the environment that last
for a wide range of durations. How synaptic adaptations in the FF
and FB connections mediate adaptation at different time-scales is
an open question. Specifically, if synaptic adaptation at a single
rate in either of the streams or at distinct rates in both streams
underlie adaptation is yet unknown.

In the present study, we investigated the functional relevance
of FF-FB cortical organization to the adaptation processes
during natural viewing with psychophysical experiments and
model simulations. Statistics of different features in the natural
environment is often altered by geometric distortions of daily
used optical elements. Two prominent examples of distorting
optical elements are progressive addition lenses (PALs) and VR
displays. The distortions in these optical elements introduce
perceptual discomforts in a significant amount of wearers
(Barrett, 2004; Sheedy and Andre, 2005; Johnson et al., 2007;
Meister and Fisher, 2008; Yao et al., 2014; Bashiri et al., 2017).
However, after prolonged use, wearers report vanishing of the
side effects indicating adaptation (Barrett, 2004; Yao et al., 2014;
Alvarez et al., 2017). In this contribution, adaptation to distortion
induced alterations is thereby used as a model system to address
day to day visual experiences in a large number of populations
who benefit from these optical elements (Keshner, 2004; Holden
et al., 2008; Meister and Fisher, 2008; Laver et al., 2012; Aller,
2013; Bashiri et al., 2017).

Distortions prominently alter motion direction statistics of
the natural visual input, e.g., skew geometric distortion in PALs
(Meister and Fisher, 2008). Accurate motion perception has a key
role in successful interaction with the dynamic natural world,
be it in the inference of the direction of moving entities, or

navigation through the environment. Its alteration by image skew
is possibly one of the causes for the difficulties experienced by
novice PAL wearers, like spatial disorientation during navigation
(Johnson et al., 2007). Visual adaptation to distortion induced
alteration in motion direction statistics of the natural visual
world is thus essential to successfully use such optical utilities.
In this representative example, we assessed the functional role
of recurrent streams to adaptation within motion processing
cortical areas, in particular to aspects of neural response tuning
and time-scales of adaptation.

We quantified motion direction statistics of skewed and
un-skewed natural image sequences to assess the skew effect.
Adaptation to skew induced motion alteration was probed
in psychophysical experiments by persisting perceptual
adjustments, i.e., motion direction adaptation aftereffects
(MAE), after exposure to the skewed natural stimuli at different
time-scales. Our model architecture is based on a biologically
inspired model of recurrent visual motion processing in the
dorsal pathway of the visual system, namely in V1 and MT,
comprising FF-FB pathways and activity normalization in each
model area (Bayerl and Neumann, 2004, 2007; Raudies and
Neumann, 2010a; Bouecke et al., 2011). We suggest dynamic
synapses within direction processing intra-cortical circuitry as
adaptive mechanisms. Assessing neural responses across V1 and
MT model units with and without FB stream, physiologically
plausible response tuning was observed during and after
adaptation only when FB was integrated. FF-FB interaction
additionally leads to synaptic adaptation within neurons
selective to a salient motion direction signal by enhancing it
over the noisy natural input. Furthermore, comparing prediction
performance of different variants of the suggested model, the
psychophysically observed MAE at different time-scales are
best predicted by distinct adaptive mechanisms in FF and FB
streams than a single adaptive mechanism in either FF or FF-FB
circuitry. In sum, recurrent bottom-up and top-down cortical
streams are integral parts of adaptation in a natural environment
and multiple dynamic synapses operating at different time
scales within the reciprocal streams mediate temporal context
dependency of this adaptation.

RESULTS

Image Skew Alters Motion Direction
Statistics of Natural Image Sequences
Natural image sequences were acquired from an open source
movie as they are exemplary for everyday visual input. Opposite
skew geometric distortions, i.e., up-skew (USK) and down-
skew (DSK), were simulated in the images. The average
motion direction statistics of the skewed and un-skewed
image sequences were quantified by correlation based Reichardt
motion detectors. Detailed descriptions of distortion simulation
and motion detection are provided in the Methods section
and Supplementary Materials, respectively. As illustrated in
Figure 1, motion direction signal statistics in the un-skewed
image sequence is broad band but dominated by horizontal
direction signals. In the skewed natural image sequences, the
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FIGURE 1 | Illustration of the effect of image skew on motion direction statistics of natural image sequences. (A) Examples of un-skewed (UnSK), up-skewed (USK)

and down-skewed (DSK) natural images that are weighted by a circular shape Hanning window. (B) Average motion energy from 12,000 natural image sequences as

a function of motion direction (θ ). Motion direction statistics of UnSK, USK and DSK natural image sequences was detected by correlation based Elaborated

Reichardt detectors (ERDs) (Reichardt, 1987; Bayerl and Neumann, 2004). Negative θ represents down-ward and positive θ represents up-ward motion directions.

dominant signal is shifted in the skewing direction, i.e., to the
positive in USK stimuli and to the negative in the DSK stimuli.

Evaluation of Skew Induced MAE
MAE was tested after sequential exposure to DSK then USK
natural image sequences. Adaptation aftereffects of each adapting
skew direction were tested by the motion direction of a
coherently moving random dot test stimuli that was perceived as
horizontal, i.e., equally likely to be upward and downward in a
method of constant stimulus procedure. From here on, we refer
to this parameter as point of subjective equality (PSE).

Figure 2 illustrates the basic schematics of the three
psychophysical experiments used to evaluate distortion induced
adaptation. Experiment 1 and 2 were designed to test MAE after
short and long timescales of skew exposure with randomized
order of test stimuli motion direction. The results of these
experiments were used to fit model parameters and to test
prediction performances at different timescales. In experiment
3, MAE was tested after short skew exposure with sequentially
increasing or decreasing order of test stimuli motion direction
to introduce additional hysteresis effect, i.e., from down to up
direction for the DSK adaptation and from up to down for
the USK adaptation. Perceptual hysteresis occurs when motion

direction of an input stimulus changes gradually, e.g., from up to
down direction or vice versa, due to internal short term memory
of the underling neural network as was previously demonstrated
in computational findings (Williams and Phillips, 1987; Bayerl
and Neumann, 2004). Accordingly, the results of experiment
3 were used as an additional dataset to validate the models’
predictions and in particular contribution of FB in the network
short term dynamics. Detailed explanation of the psychophysical
experiment procedures are included in the Methods section.

Distortion Induced MAE: Psychophysics
Figure 3 shows the psychometric curves of overall observers
responses recorded after skew exposure in the three
psychophysical experiments. The percentage of upward
responses is plotted as a function of test stimulus motion
direction, θ . A negative θ value corresponds to a downward
motion direction and a positive value to an upward one.

The shift in the PSEs of the opposite skew adaptation, i.e.,
1PSE = PSEUSK − PSEDSK , was significantly positive in all
the three experiments (paired sample t-test, p < 0.05). After
adaptation to up-skewed natural stimuli, observers perceived an
upward motion direction as horizontal and vice versa. Thus, the
PSE shifted to the direction of the adapting skew whereas the
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FIGURE 2 | Basic illustration of MAE measurement experiments. (A) Experiment 1: MAE after short skew exposure; each adapting skew top-up and test stimuli

presentation lasted for 0.3 s separated by same duration of black screen presentation in the inter stimulus interval (ISI) period. b) Experiment 2: MAE after long skew

exposure; prior 180 s of skew adaptation followed by 15 s of top-up, 0.5 s of ISI and 0.5 s of test stimuli presentation. c) Experiment 3: MAE after short skew

exposure and hysteresis effect; each top-up,ISI and test stimuli presentation lasted for 0.3 s. The dot ended arrows represent if the order of the test stimuli between

successive trials was randomized, in (A) and (B), or sequential, in (C).

physical horizontal motion direction is perceived to be shifted in
the opposite direction. Furthermore, in all the experiments, the
PSEs from the two oppositely skewed stimuli were not symmetric
about the physical 0◦ of motion direction albeit the amount of
the skew in the adapting stimuli was equal in magnitude. This is
illustrated by a significant bias in the sum of the PSEs,

∑

PSE =

PSEUSK + PSEDSK , in all experiments toward the negative; paired
sample t-test p < 0.05. The asymmetry conceivably reveals either
the adaptation state induced by the first DSK exposure which
was not recovered during the subsequent USK exposure or due
to a relative difference in the strength of the DSK than the USK
adapting signal, where both are not mutually exclusive.

Model: Dynamic Synapses Within a
Recurrent Motion Processing Cortical
Circuit
Activity dependent short term synaptic depression is one
potential source of neural response adjustments during
adaptation (Castellucci et al., 1970; Abbott et al., 1997; Kohn,
2007; Regehr, 2012; Tetzlaff et al., 2012; Webster, 2015). The
strength of synaptic coupling between cells, i.e., synaptic
efficacy, depends on the presynaptic vesicle occupancy which
is the amount of releasable neurotransmitters (Hennig, 2013).
Repeated activation of the post synaptic cell by the presynaptic
cell causes depletion of these vesicles and a concomitant
reduction in postsynaptic response (Hawkins et al., 1993; Zucker
and Regehr, 2002; Hennig, 2013). If the excitation input is
removed from the presynaptic neuron, the synaptic strength will
slowly restore until the vesicles are fully replenished. Short term
synaptic depression has been previously revealed in different
brain areas and its potential implications in various dynamics of
recurrent cortical neural networks have been reported (Abbott
et al., 1997; Tsodyks et al., 1998; van Rossum et al., 2008;
York and Van Rossum, 2009; MacLeod et al., 2010; Stevenson
et al., 2010; Jääskeläinen et al., 2011). The ubiquity of short
term synaptic depression in several of cortical areas, reflects
that it is a characteristic mechanism across cortical circuitries
underlying neural response adjustments during adaptation.

Such dynamic synaptic mechanism in motion processing
cortical circuitry potentially underlies the psychophysically
demonstrated distortion induced MAE. Wherein, during
adaptation, exposure to distorted motion direction information
decreases the synaptic strength between neurons selective to
those directions. Subsequently, when test stimuli are presented
before the synaptic strength is replenished, an aftereffect can
be observed. Accordingly, such synapse specific gain control
mechanism within a recurrent motion processing cortical
circuitry is considered in our model to investigate response
adjustments of motion processing neurons during exposure to
motion information altered by distortions.

Our model extends a previously developed architecture for
recurrent motion processing in V1 and MT areas comprising
FF and FB recurrent streams (Bayerl and Neumann, 2004). This
model framework has been selected as it considers a characteristic
feature of the cortical architecture, i.e., bidirectionally connected
cortical areas, which would allow us to assess the relative
contribution of the reciprocal streams for the adaptation
process. Furthermore, this model has been shown to be able
to predict data from neurophysiological recordings as well as
behavioral studies (Bayerl and Neumann, 2004, 2007; Raudies
and Neumann, 2010a; Bouecke et al., 2011). Direction tuned
neural activation is described by a membrane potential of a
single compartment column model that depends on excitatory,
modulatory and inhibitory synaptic inputs. As an extension,
dynamic synaptic efficacies were considered in the FF and
FB excitatory connections to introduce synaptic adaptation in
the model.

A scheme for the basic architecture of the model in cascaded
motion processing at different cortical areas is illustrated in
Figure 4. The model starts with preprocessing of the input
by LGN cells followed by motion direction signal detection
by direction selective filters in V1 that are implemented as
spatiotemporal correlation techniques (ERDs). The subsequent
recurrent motion direction processing by direction selective cells
within areas V1 and MT is the main component of the model
where synaptic plasticity is implemented. In this stage, dynamic
synapses within reciprocal FF and FB streams are taken into

Frontiers in Neural Circuits | www.frontiersin.org 4 February 2019 | Volume 13 | Article 9

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Habtegiorgis et al. Cortical Interactions Role in Adaptation

FIGURE 3 | (A) Psychometric functions of overall observers’ responses in the three experiments. In each psychometric plot, the Gaussian fitted plot and the

confidence intervals at PSE are, respectively shown in red for the DSK adaptation aftereffects and in blue for the USK adaptation aftereffects. (B) Overall observers’

averages of 1PSE and
∑

PSE. The error bars show the standard errors of the averages.

account to introduce plasticity. The dynamic synapse constitutes
short-term synaptic adaptation as a consequence of vesicle
depletion and replenishment that occur during the presence and
absence of excitatory presynaptic signals, respectively. This is
realized by dynamic synaptic efficacy parameters that weight
the FF and FB excitatory inputs from V1 to MT and from
MT to V1, respectively. As a final stage, a steady-state model
of decision-making layer maps MT responses into “upward”
and “downward” responses in order to account for the decision
process employed in the psychophysical experiments. The
computational modeling of the synaptic efficacies and neural
activations is described in detail in the Methods section.

Previous findings reported that adaptation at different
timescales is mediated by multiple adaptive mechanisms which
operate at distinct rates (Mesik et al., 2013). Specifically, these
findings suggested that a fast adaptive mechanism, which adapts
and de-adapts fast, and a slow adaptive mechanism, which adapts
and de-adapts slow, coexist in a cortical circuit to mediate
adaptation at different timescales. In line with these findings,
in our model variants, distinct fast and slow dynamic synapses
tuned to different adaptation rates are considered. As explained
in detail in the following paragraph, in the fast dynamic synapses,
the rates of vesicle depletion and replenishment were fitted to
replicateMAE frommilliseconds of skew exposure in experiment
1. In the slow dynamic synapses, the rates of vesicle depletion
and replenishment were fitted to replicate MAE time scales
of minutes of skew exposure in experiment 2 (see Methods
section). To test if the synaptic dynamics in the recurrent FF-
FB streams could underlie these findings, predictions of MAEs
in the three psychophysical experiments were tested from five
different model variants. As illustrated in Figure 5A, the model
variants were defined by considering different complexity of the
circuitry, either only FF or FF-FB, and different temporal rate
dynamic synapses, either single or multiple dynamic synapses.
Adaptation is commonly modeled as a reduction in input gain or
changes in the strength of normalization within a single cortical
area without recurrent connectivity. Using this approach as a

baseline, model variant 1 and model variant 2 comprise a simple
FF circuit with a dynamic synapse which changes the response
gains of MT responses. The rates of the dynamic synapses in
model variant 1 and model variant 2 were fast and slow which
were fitted to replicate the psychophysical results of experiment
1 and experiment 2, respectively. To compare the recurrent FB
effect, model variant 3 and 4 were defined by considering a FB
circuit. Analogous to the first twomodel variants, model variant 3
andmodel variant 4 comprise either fast FF and slow FB dynamic
synapses fitted to replicate psychophysical results of experiment
1 and experiment 2, respectively. With the presumption that
FF mechanisms are faster than feedback mechanisms (Destexhe
et al., 1998; Roth and van Rossum, 2009; Thiele, 2012), fast
dynamic synapses are considered in the FF stream and slow
dynamic synapses are considered in the FB stream. In contrast
to the above four model variants comprising single adaptive
mechanism, model variant 5 was defined by considering dynamic
synapses in both FF and FB circuits which operates at distinct
timescales. The rates of its FF and FB dynamic synapses were
taken frommodel variant 3 andmodel variant 4, respectively. The
prediction performance of each model variant was validated with
either experiment 1 or experiment 2 to which they were not fitted
to and with an additional data set from experiment 3. Finally, the
role of FF-FB interaction on neural response tuning properties
has been investigated by comparing neural responses of model
variant 1 and model variant 5 in the absence and presence of
FB, respectively.

FF-FB Functional Role in Adaptation at
Multiple Time-Scales
The human visual system optimally adapts to the changes in
the natural environment which span different timescales. As
suggested by previous studies, multiple adaptive mechanisms
potentially underlie adaptation at different timescales (Bao and
Engel, 2012; Bao et al., 2013; Mei et al., 2015). However,
if these multiple adaptive mechanisms correspond to the
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FIGURE 4 | Overview of recurrent motion processing in cascaded model areas and their interactions. Motion is initially detected from image sequences in sequential

early stage preprocessing by LGN and V1 simple cells which is realized by ERDs. Motion direction signals are subsequently processed in a recurrent loop of direction

selective cells in V1 and MT connected by FF and FB streams. This stage is the core component of the model where synaptic plasticity is introduced within the FF and

FB streams as highlighted by the broken lines. A steady-state model of decision-making finally maps MT responses into “upward” and “downward” responses.

dynamic synapses in the recurrent FF-FB streams of the cortical
circuitry has not been previously assessed. To test the functional
relevance of FF-FB circuits, specifically their synaptic dynamics
for mediating MAE at different time-scales, we compared
prediction performance of the first four model variants with
dynamic synapses operating at a single rate to model variant
5 which entails different rate dynamic synapses in the FF and
FB circuits.

A summarized prediction performance of each model

variant is shown in Figure 5. The psychometric curves of

model predictions together with the psychophysical results
are presented in the Supplementary Materials. Model variants
constituting a single adaptive mechanism, variant 1–4, does not
predict 1PSEs and

∑

PSEs at the time scales of adaptation
other than they are fitted to. Model variant 1, comprising FF

circuit with the fast dynamic synapse, does not predict any
of the experiments and gives the largest prediction error. The
fast synaptic mechanism of model variant 3 predicts only short
adaptation MAEs in experiment 1 and 3 and not the MAEs from
the long exposure in experiment 2. The slow dynamic synapses of
model variants 3 and 4 predict theMAEs only from long exposure
in experiment 2 but not from the short exposures in experiment
1 and 2. Model variant 5, comprising distinct fast and slow
dynamic synapses in FF and FB streams, predicts all the three
skew inducedMAEs at the different time-scales. From the overall
prediction, this model variant performed best. Furthermore,
among the model variants with fast dynamic synapses, only those
with FB circuit predicted experiment 3 albeit all were fitted to
that specific adaptation timescales. This indicates FB is an integral
part of the neural network underlying adaptation.

In sum, a FF-FB model with slow and fast adaptive

mechanisms best predicts skew induced MAE at different time-
scales which cannot fully be accounted by a single adaptive

mechanisms in only FF or FF-FB circuit. Thus, the synaptic
dynamics of FF-FB cortical circuitries tuned at different time-

scales are relevant in mediating adaptation at different time scales
during natural vision.

FF-FB Functional Role in Neural Response
Tuning
The input from the natural environment consists of uncertainties
or noise as is depicted in Figure 1. The visual system
however adapts in an optimal manner by inferring relevant
information from such uncertainties using prior knowledge of
the environment (Kohn, 2007; Wark et al., 2009; Stevenson
et al., 2010). Since FB acts as such predictive signal from
higher to lower cortical areas, it possibly plays a role in
such optimal adaptation, but this has not been previously
demonstrated. Here, to test the role of FF-FB interaction in
neural response tuning during adaptation, we assessed responses
of V1 and MT model units during and after adaptation in
model variant 1 and 5, i.e., in the absence and presence of FB
circuitry, respectively.

Figure 6 shows an example simulation of model units’
responses in V1 and MT during adaptation to DSK stimuli for
0.3 s. In model variant 5, V1 and MT responses are similar and
have a uni-modal response patterns with peaks at the salient
information of the input. In model variant 1, i.e., when FB is
eliminated, the response curves of V1 and MT model units have
a different pattern and maxima. V1 response is bimodal and
resembles the pattern of the noisy input statistics. Whereas, the
MT response is uni modal with a maximum between the two
modes of V1 response pattern. Thus, FB disambiguates salient
motion information from the noisy input and results in similar
response tuning in model area V1 and MT during adaptation.

An example simulation of V1 and MT model units’ responses
for 0◦ test stimulus motion direction without and with prior
DSK adaptation are illustrated in Figure 7. In model variant 5,
exposure to DSK adapting stimuli shifted the response curves
of both V1 and MT units toward the up direction away
from their preferred direction which was measured without
prior adaptation. The FB dynamic synapse is slow, thus not
depleted enough by such short exposure time-scale to induce
adaptation effect in V1. The fast FF dynamic synapse tuned at
short time-scale induces adaptation to the MT responses. The
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FIGURE 5 | A summary on prediction performance of five model variants comprising dynamic synapses operating at either single or multiple rate in either only FF or

FF-FB cortical circuitries. (A) The experiments in which the model variants predict the 1PSEs and
∑

PSEs within the range of psychophysical results or not. (B) The

prediction error, erravg, which was defined as the averaged magnitude of the deviations of each model’s predictions from the corresponding psychophysical ranges.

FIGURE 6 | Contribution of FB in enhancing salient motion information: normalized response curves of V1 and MT model units after 0.3 s exposure to DSK adapting

stimuli a) in model variant 5, i.e., FF-FB circuit and (B) in model variant 1, i.e., only FF circuit.

recurrent FB projection which modulates the V1 input matching
to the adapted MT response induces the repulsive effect in V1.
In model variant 1, however, the repulsive aftereffect is visible
only in MT model units since the dynamic synapse in the
FF circuit modulates only the input to MT. Furthermore, the
repulsive effect in this variant is smaller than what is observed in
model variant 5. This indicates compensatory adaptation effect
of the V1 bimodal response pattern during DSK exposure in
model variant 1. Thus, the inclusion of FB connections results in
similar adaptation to a salient motion information in model area
V1 and MT.

In sum, exposure to skewed natural image sequences results
in repulsion of response curves in model areas V1 and MT. This
neural response tuning conceivably underlies skew adaptation.

DISCUSSION

Skew induced MAE and the underlying cortical processes

were assessed with psychophysical experiments and model

simulations. MAE was revealed at two time scales of skew

exposures in both psychophysical results and model predictions.

The observers PSE, i.e., random dots motion direction perceived
as horizontal, shifted in the adapting skew direction. In

other words, the physical horizontal motion direction of
the test stimuli was perceived to be shifted away from the
adapting skew direction. Thus, exposure to skewed natural
stimuli induces adaptation in motion perception which is
a candidate mechanism for habituation to distortions of
optical elements.
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FIGURE 7 | Adaptation effect comparison in (A) Model variant 5 (FF-FB) and

(B) Model variant 1 (only FF). Normalized response curves of V1 and MT

model units for the test stimuli input at 0◦ motion direction without prior

adaptation and after 0.3 s of DSK adaptation. The downward arrow indicates

the dominant motion direction, at –50◦, in the adapting DSK stimuli.

A recurrent neural model of two stage motion direction
processing with distinct dynamic synaptic mechanisms within
FF and FB connections was suggested to explain the potential
underlying mechanism of the observed MAE. Simulation results
of the model replicated the psychophysically shown MAE at
different time scales of skew exposure. Thus, multiple rate
adaptive mechanisms within recurrent FF and FB cortical
pathways explain adaptation to optical manipulations of the
natural environment, e.g., through distortion by optical elements.

Biological Relevance of the Suggested
Model
Unlike pure feedforward mechanisms considered in previous
adaptation models(Clifford and Langley, 1996; van de Grind
et al., 2003), motion information is processed in a cortical circuit
formed by synaptic organization of FF and FB connections
between different cortical areas (Sillito et al., 2006; Mather et al.,
2008; Stuit, 2009; Rokszin et al., 2010). A modulatory feedback
re-entrant mechanism suggested in the present study has been
reported in previous physiological investigations (Friston and
Büchel, 2000; Hupe et al., 2001; Sillito et al., 2006). Specifically,
excitatory FB projection from MT combined with activity
normalization by subsequent center surround competition was
shown to affect activities of V1 cells.

One important aspect of top-down FB signal is the
disambiguation ofmotion information via selective enhancement
and propagation of salient signals (Bayerl and Neumann,
2004, 2007; Raudies and Neumann, 2010a; Bouecke et al.,
2011). The motion direction signal from the adapting natural
image sequences are highly ambiguous and noisy as shown

in Figure 1. In our model, these ambiguous signals are
reduced and salient direction information is enhanced as a
result of feedback and lateral competitive interactions. Figure 6
shows this disambiguation in activities of V1 and MT in
the presence and absence of such FB mechanism. The FB
functions as a predictive signal that enhances lower level
input that matches “expectations” or feature specificity of
higher level responses (Grossberg, 1982; Ullman, 1995). In
this manner, only the input signal that is in resonance to
the higher level MT response is enhanced. As a consequence,
in line with physiological findings, FB disambiguates motion
direction signal simultaneously in both V1 and MT areas (Pack
et al., 2003). Moreover, when FB connections are integrated
into the model, similar adaptation induced response tuning
occurs in both V1 and MT areas, consistent with physiological
findings (Patterson et al., 2013), see Figure 6. If the FB
pathway is eliminated, a repulsive shift adaptation effect would
be visible only in MT model units since the FF dynamic
synapses affect only the driving FF input stream from V1
to MT. Thus, synaptic adaptation within FF-FB connections
reflects physiological plasticity in different visual areas during
skew adaptation.

The model simulation results also align with Bayesian
inference prediction frameworks of optimal adaptation processes
which necessitate predictive prior information (Grzywacz and
de Juan, 2003; Kording et al., 2007; Wark et al., 2007, 2009).
A comparable resemblance with such model can be derived by
considering the receptive fields and dynamic synaptic strengths
as adaptive likelihood functions and the feedback information
as an adaptive prior information. However, in the present
model, priors are dynamic over time and the likelihoods are
not statistically independent. As FB allows predictive prior
information from MT to modulate the likelihood of V1
responses, disambiguated motion signal will propagate though
the network until a global consistent information in both areas is
achieved. In line with the inference theory, this leads to optimal
adaptation to a salient information by decreasing the risk of
adapting to error signals. In this case, the suggested neural model
can be treated as a neuronal implementation of Bayesian-like
principles of adaptation.

Furthermore, the FB re-entrant mechanism is one way
of integrating multiple adaptive mechanisms which control
adaptation at different time-scales. Previous models assume
motion adaptation to be a consequence of a single adaptive
mechanism that operates at a specific time scale within
a hierarchical bottom-up motion processing cortical circuit
(Clifford and Langley, 1996; van de Grind et al., 2003). However,
recent psychophysical findings reported evidence on distinct
multiple adaptation mechanisms operating at different time
scales (Mesik et al., 2013). In our model, we incorporated two
different temporally tuned adaptive mechanisms, FF synapses
tuned to short adaptation and the FB synapses to long
adaptation. This enabled accurate prediction of skew induced
MAE at different time-scales. To examine if skew induced MAE
could be explained by one of the single adaptive mechanisms,
we compared prediction performance of our model with its
variants which comprise only a single adaptive mechanism. The
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simulation comparison shows that the prediction performance
critically depends on FF-FB recurrency with different adaptive
mechanisms. Thus, multiple adaptive synapses within FF and FB
streams ofmotion processing circuitry are candidatemechanisms
for skew induced MAE operating at different time-scales.

The model employed in this investigation is detailed at
a mesoscopic level of description regarding its structure and
the computational elements. In particular, the state variable is
defined by the mean activation (membrane potential) over a
population of neurons equivalent to a cortical mini-column.
Each mini-column represents a single feature selectivity at a
specific spatial position. Different feature selectivities (motion
direction, in our case) at one location comprise a model cortical
column. The mean potential changes in such population are
formally described by a first-order rate equation (Equation 4).
The membrane time constant for individual cells in cortex varies
for different types of neurons (Markram et al., 2004; Monier et al.,
2008). Since we here consider the dynamics of whole populations
of neurons in mini-columns we have adjusted the time constants
to a value higher than that of individual neurons. This accounts
for the variation response times in the population and the exerted
effects of inhibition on the excitatory units.

The components considered in the model are minimal in
the sense that structural elements which do not contribute to
the considered functionality are not included. Specifically, the
model investigation emphasizes short-term synaptic adaptation,
which is adopted here by a habituative mechanism (Castellucci
et al., 1970), and feedback from activity representations at a
higher stage (MT) to an earlier stage (V1). In contrast, lateral
connections between columns in a spatial neighborhood are not
incorporated in the model, even though they are observed in
anatomy. We argue that the adaptation of neuronal selectivity
and its modulation by contextual feedback from higher stages
are sufficient to explain motion adaptation in the experimental
setting investigated here. Such feedback spreads over a larger
spatial neighborhood than lateral intra-cortical connections and
also acts on a shorter timescale which is comparable with
the feedforward delivery of signals. Since lateral connections
seem not to make a major contribution to the contextual skew
adaptation effects investigated here, we did not incorporate
lateral connections in our model.

Overall, we believe that the proposed model and its
selected granularity capture the most relevant details of neural
response characteristics at the primary stages of cortical motion
adaptation. The characteristics of the model dynamics have
been investigated from a theoretical perspective to characterize
steady-state solutions and other temporal response properties
(Brosch and Neumann, 2014). These insights helped us to
specify a stable configuration of a reference model network
and to integrate the model extensions. In a nutshell, the
short-term adaptation of synaptic connections explains the
desensitization of units (groups of neurons in a mini-column)
and the shift of direction tuning at the population level. This
allowed us to establish a link to the mesoscopic neuronal
model dynamics to the behavioral response characteristics
of human subjects adapted to skewed input patterns as
measured psychophysically.

Other Potential Neural Correlates for
Distortion Induced MAE
Substantial information has been revealed in classical adaptation
studies by testing adaptation effects induced by artificial
stimuli such as random dots and bars, albeit this might not
always divulge visual performances observed in natural viewing
conditions (Ringach et al., 2002; David et al., 2004; Felsen and
Dan, 2005). Natural image content is thereby an ideal stimulus to
potently drive the visual system in its intended mode (Webster,
2015; Snow et al., 2017). To enhance the ecological relevance
of the investigation, the present study tests distortion induced
motion adaptation when the visual system is exposed to stimuli
that mimic the dynamics of the natural environment.

Adaptation aftereffects originate from response changes in
neurons processing common features of adapting and test
stimuli (Clifford et al., 2007; Webster, 2011, 2015). Skew
distortion of natural image sequences alters multiple features,
e.g., motion direction statistics, orientation statistics and oblique
magnification. Adaptation to such attribute rich stimuli might
activate several cortical areas and could involve their coordinated
responses (Habtegiorgis et al., 2017). The present study assessed
MAE induced by distortions of natural scenes and predicted
response changes in direction selective neurons across cortical
areas V1 and MT. Motion is dominantly processed in the dorsal
visual pathway, albeit inputs from form processing areas might
as well contribute to motion information processing, and thus
to skew-induced MAE (Geisler, 1999; Edwards and Crane, 2007;
Beck and Neumann, 2010; Pavan et al., 2013). Our models scope
covers the role of FF-FB streams and their synaptic dynamics
to adaptation within motion direction selective neurons in the
dorsal visual pathway. However, FF and FB reciprocal streams
considered in the present study are characteristic means of
information flow between different cortical layers (Felleman and
Van, 1991; Bastos et al., 2015). Thus, the contributions revealed
here might reflect a general adaptation mechanisms in other
feature selective cortical areas as well.

CONCLUSION

The present study investigated skew adaptation mechanisms for
image sequences from a psychophysical as well as a modeling
perspective. Skew distortions, as simulated here with natural
image sequences, typically occur for viewers wearing spectacles
or experiencing distortions after changes in eyesight. The
results obtained from the psychophysical investigations illustrate
that skew exposure in milliseconds and minutes time-scales
induces adaptation in motion perception. In the computational
modeling investigation, a recurrent FF-FB model of motion
detection and integration was employed and further elaborated
to include synaptic adaptation mechanisms in the bottom-up
and top-down connections. The model responses replicated
psychophysical findings of adaptation effects after different time-
scales of skew exposure. In the model, the FF-FB interactions and
their synaptic dynamics had distinct roles in the computation
wherein together they lead to such psychophysically plausible
adaptation responses. Furthermore, the models prediction on an
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additional hysteresis effect yielded similar results when tested
psychophysically. This indicates analogous temporal dynamics of
the neural networks in the suggestedmodel and the human visual
system underlying skew adaptation at multiple time-scales.

METHODS

Psychophysics
Study Approval
The study was approved by the Ethics Committee of the Medical
Faculty of the Eberhard Karls University of Tübingen and the
University Hospital.

Observers
10 observers participated in experiment 1 and 2, among which
six partook in both. 11 observers participated in experiment 3,
eight of which also participated in experiment 1 and five of
which in experiment 2. All observers aged between 18 to 40
years. All observers had normal or corrected to normal vision
during the experiment and were naive about the purpose of the
study. In adherence to the Declaration of Helsinki, informed
written consent was collected from all observers before their
participation in the study.

Set-Up
The psychophysical experiments were designed using
PsychToolbox in Matlab (Mathworks, MA, USA) (Brainard,
1997). Stimuli were displayed on a ViewPixx/3D monitor at a
resolution of 1920 × 1080 pixels (with 0.271 mm pixel pitch)
and refresh rate of 100 Hz in an otherwise darkened room. A
chin and head rest was used to fix the viewing distance to 57 cm.
Up and down keys of a keyboard were used to collect observer’s
responses during adaptation aftereffect measurements.

Stimuli
12,000 natural images, of size 1, 280 × 720 pixels, were
sequentially taken from an open source movie to prepare the
skewed adapting stimuli (Baumann and Behnisch, 2010). Each
natural image was geometrically skewed at a shear angle of 9 in
a horizontal and vertical directions by remapping pixel positions
of undistorted image, x and y, into new distorted pixel positions,
xd and yd, as in Equation (1).

[

xd
yd

]

=

[

x+ tan(ψ) · y
tan(ψ) · x+ y

]

(1)

The inner 650× 650 pixels of each distorted image were used by
cropping out the sheared edges. Each image was then filtered by
a circular Hanning window, w (Harris, 1978).

w(r) = cos2(
π

N
· r) (2)

In equation 2, r is the radial distance of the pixel position from
the center of the image and N was set to be equal to the image
dimension, i.e., 650 pixels.

Up-skewed and down-skewed adapting image sequences
(Figure 1A) were prepared by skewing 12,000 natural images at

FIGURE 8 | Illustration of moving random dot test stimuli.

a shear angle of 9 = +25◦ and 9 = −25◦, respectively. During
adaptation, these image sequences were rendered at a rate of 25
frames per second.

Test stimuli were white dynamic random dots shown on
a black background at a contrast of 1 in a circular annulus
(Figure 8). The diameter of the annulus had the same dimension
as the adapting stimuli, i.e., 650 pixels, and always consists of
2,000 dots. Each dot was circular and subtended a visual angle of
0.14◦. The dots move coherently at a speed of 3◦/s. The motion
direction of the test stimuli was either diagonally up or diagonally
down at an angle of θ from the horizontal (Equation 3). For a
specific motion direction, θ , the position of the dots, x1 and y1
was updated to x2 and y2 in the subsequent frame using Equation
(3). Positive θ corresponds to upward motion and negative to
downward motion. Dots reaching the edge of the annulus were
randomly repositioned to a new location within the annulus.

[

x2
y2

]

=

[

cos(θ) · x1
sin(θ) · y1

]

(3)

Procedure
Before taking part in the psychophysical experiment, observers
were informed about the procedure and trained on how
to respond to the test stimuli using a keyboard. Viewing
was monocular.

The schematic of the experimental procedure for the three
psychophysical experiments is shown in Figure 9. In all the
three experiments, adaptation was tested to the oppositely
skewed image sequences alternately, first to the down-skewed
then to the up-skewed natural image sequences. The adaptation
aftereffect was tested after each adaptation using the method of
constant stimuli.

In experiment 1, adaptation was tested after short exposure
to skewed image sequences in a top-up procedure. Each top-up
and test stimulus presentation was separated by inter stimulus
interval (ISI) with blank screen, each lasting for duration of
0.3 s. In experiment 2, skewed adapting image sequence was
shown first for 3 min and then for 15 s after each test
stimulus presentation to top-up the adaptation. Test stimuli were
presented for 0.5 s. ISI between each top-up and test stimulus
presentation had 0.5 s duration. In both experiments, the motion
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direction of the test stimuli was in a randomized order. After
each test stimulus presentation, observers had to report whether
the motion direction of the random dot stimuli was diagonally
up or diagonally down by pressing the up or the down key of
a keyboard, respectively. In experiment 1 and experiment 2, 12
motion directions were used for the test stimuli, from −6.6◦

to 6.6◦ in step size of 1.2◦. Five responses were recorded for
each test stimulus motion direction. In total, 60 responses were
recorded to compute the psychometric curves of each adapting
skew direction.

In experiment 3, we utilized a neural hysteresis phenomena
to validate our models’ prediction. We tested the possible
interaction between adaptation from short exposure to the
skewed stimuli and hysteresis effect from sequentially changing
motion direction of our test stimuli. the order of the test stimuli
direction was from down (−13◦) to up (13◦), for the DSK
adaptation, and from up (13◦) to down (−13◦), for the USK
adaptation, in step size of 2◦. Thus, any possible hysteresis effect
of the test stimuli sequence is expected to induce an MAE larger
than the one measured in experiment 1 with a randomized
order of the test stimuli motion direction. Each top-up and test
stimulus presentation was separated by ISI with blank screen,
each lasting for a duration of 0.3 s. As in experiment 1 and 2,
observers had to report the motion direction of the test stimuli
by using the up or down key of a keyboard. Four responses
were recorded per each test stimulus in four cycles. In total, 56
responses were recorded to compute the psychometric curves of
DSK and USK MAEs.

Data Analysis
In all experiments, two psychometric curves of motion direction
perception were separately computed from the responses which
were recorded after exposure to up- and down- skewed natural
stimuli. In each psychometric function, the percentage of upward
responses as a function of motion direction of the test stimuli
was fitted with a cumulative Gaussian using the Psignifit 4.0
software (asymptotes set free but assumed to be equal) (Schutt
et al., 2016). The point of subjective equality (PSE), i.e., the
motion direction at 50 percent of upward responses indicated the
motion direction that was perceived as horizontal. The size of the
magnitude of the adaptation aftereffect, 1PSE, was evaluated as
the difference between the PSE of the USK and DSK adaptations.
The sum of the USK and DSK PSEs,

∑

PSE, was also used to
quantify any direction bias of the adaptation aftereffect from
the temporal ordering of the up- and down-skew exposure.
The overall aftereffect was computed by averaging the 1PSEs
and

∑

PSEs from all the observers. A paired sample t-test was
conducted to evaluate the significance of the average effects.

Modeling
Our model focuses on motion direction tuned mechanisms in
the dorsal pathway of the visual cortex, specifically V1 and MT.
Motion direction processing in areas V1 and MT is modeled
together with a population response readout decision layer. We
suggest a dynamic short-term synaptic plasticity mechanism
within FF and FB pathways between V1 and MT units to realize
motion direction adaptation.

Our model extends a previously developed architecture for
motion processing in areas V1 and MT (Bayerl and Neumann,
2004). Here, we outline the basic features of the model and then
describe the extension made to explain visual plasticity in motion
perception. The readers are referred to the previous papers for
detailed description of calculations, motivation and biological
plausibility of the model.

The input to the recurrent motion processing V1 and MT
model units is an average motion direction signal, Rθ , of either
the random dot test stimuli or the adapting image sequences. For
the random dot test stimulus, Rθ was a Gaussian signal centered
at the corresponding test stimuli motion direction and width
of 15◦. For the adapting image sequences, Rθ was computed by
spatiotemporal correlation technique as described in detail in the
Supplementary Materials. For each image sequence, the local
motion signal, Rx,t,ρ,θ as a function of speed and direction at each
spatial location x and sample time t, is initially detected by using
modified Elaborated Reichardt detectors (ERDs) (Reichardt,
1987; Bayerl and Neumann, 2004) which comprise sequential
preprocessing by LGN cells, orientation selective cells and
cells which compute motion energy from consecutive frames.
Since the focus of this study is on direction processing and
also to ease the computational load, the population response
Rx,t,ρ,θ is simplified to Rx,θ by integrating over speed and
time. Subsequently, direction selective V1 cells filter normalized
motion direction signal, Rnormx,θ , at each location with center-
surround spatial normalization. For easing the computational
load in the subsequent recurrent motion direction processing
stage by V1 and MT units, Rnormx,θ is spatially integrated by
inserting an average pool layer just before the recurrent stage
and the input signal is simplified to only direction domain Rθ .
Thus, in the recurrent stage, only motion direction processing by
direction selective V1 andMT cells will be considered irrespective
of their spatial, temporal and speed preferences.

Model units for direction tuned cells in area V1 and MT
process motion direction information in a recurrent manner via
FF and FB connections. The FF connection drives the input from
bottom to up cortical layers and the FB modulation enhances
the lower level input matching to the higher level responses. The
FF and FB excitatory connections are defined by two weighting
factors; i.e., constant synaptic Gaussian weights (G) and dynamic
synaptic efficacies (y). The synaptic weights can be considered as
the receptive field structures and the efficacies as a probability
of the presynaptic neuron to activate the post synaptic neuron
depending on transmitter release.

In a nutshell, as illustrated in Figure 10, motion processing
in each model area constitutes three sequential stages; FF motion
direction filtering, input signal enhancement with FBmodulation
and activity normalization with pool inhibition.

Assuming fast processes in filtering and modulating stages,
the response dynamics of each model unit can be simplified to
a single equation (Equation 4).

τ
d

dt
vV1|MT=−vV1|MT+(1−vV1|MT)·IV1|MT

ex −(1+vV1|MT)·I
V1|MT
inh

(4)
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FIGURE 9 | Detailed illustration of psychophysical procedures followed in experiment 1 (A), experiment 2 (B) and experiment 3 (C).

FIGURE 10 | Details of motion processing in each model area. Motion is initially detected from image sequences by ERDs (Reichardt, 1987; Bayerl and Neumann,

2004), and subsequently processed in a recurrent loop in model areas V1 and MT. A steady-state model of decision-making layer is integrated to map MT responses

into “upward” and “downward” motion perception decision process employed in the psychophysical experiments.

IV1ex = (Gθc,V1 ∗ Rθ ) · (1+ λ · I
V1
mod) (5)

IMT
ex = yFF · (Gθc,MT ∗ vV1) (6)

IV1mod = yFB · vMT (7)

I
V1|MT
inh

=
1

n
·
∑

θ

IV1|MT
ex (8)

yFF and yFB are the dynamic synaptic efficacies in the FF and
FB connections. vV1 and vMT denote membrane potentials of
each model unit in area V1 and MT, respectively. The membrane
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time constant, τ = 30 ms, was set equal in both V1 and MT
model units for simplification. Iex, Imod and Iinh are excitatory,
modulatory and inhibitory inputs for each model unit. Since
the focus of the model is only in the two stages, V1-MT, we
only consider FB modulation from MT to V1. Thus, possible
modulation input to area MT from higher areas, like MST and
attention, would be set to zero in our model. Rθ is the driving
FF inputs for model area V1 and represents the aforementioned
motion direction statistics of either the adapting image sequences
or the moving random dot test stimuli. Gθc,v1 and Gθc,MT are
the direction filtering receptive fields of V1 and MT units. For
simplicity, they are assumed to be the same and implemented as
a Gaussian kernel with directional width of σ θc,V1 = σ θc,MT =

45◦, respectively. n = 37 represents the number of direction
tuned cells in each model area and was selected randomly. Thus,
with these assumptions similar input filtering and normalization
processes are modeled. “∗” and “·” are the convolution and scalar
multiplication operators, respectively. λ = 20 is the FB strength
which was adjusted to enhance the main signal over the noise,
see Figure 6.

The model was extended by incorporating dynamic synaptic
efficacies in the FF and FB excitatory connections to introduce
synaptic adaptation in the network. Neural models of synaptic
adaptation have been proposed by several researchers (Carpenter
and Grossberg, 1987; Wang, 1993; Tetzlaff et al., 2012).
The suggested mechanisms share common principles but also
incorporate further details which depend on the particular aim of
the modeling scope that is covered in addition. Here, the synaptic
efficacy is described as the neurotransmitter occupancy of the
presynaptic vesicle, ranging between zero and one. Previously
proposed gating mechanism is considered to model the FF and
FB dynamic efficacies by a first order differential equation of the
form in Equations (9, 10), respectively (Carpenter and Grossberg,
1987; Hennig, 2013).

τsyn ·
d

dt
yFF(t) = αFF · (1− yFF(t))− βFF · yFF(t) · vV1(t) (9)

τsyn ·
d

dt
yFB(t) = αFB · (1− yFB(t))− βFB · yFB(t) · vMT(t) (10)

τsyn = 1 is the time constant of the gating mechanism;
αFF = 1.2, βFF = 10 are FF synaptic efficacy parameters
which are fitted to replicate psychophysical results of short
adaptation in experiment 1, and αFB = 0.04, βFB =

1.2 are FB synaptic efficacy parameters which are fitted to
replicate the psychophysical results of long adaptation in
experiment 2. The first term of the gating function comprises
two simultaneous processes with the amount of transmitter
production (α) and its inhibition−α.y(t)). Expressed differently,
this term represents a tonic drive α to replenish the release
pool with transmitter by an amount that is proportional
to the unexcited vesicles (reserve pool), 1 − y(t). The
second term denotes the transmitter release depending on
the strength of presynaptic signal, vv1 (for the FF synapse)

and vMT (for the FB synapse), and the vesicle occupancy,
y(t). This term depletes the presynaptic vesicle occupancy
at a rate of β and regulates the strength of the temporal
adaptation to form an activity-gated input. In simple terms,
the synaptic strength decreases from 1 toward equilibrium
state of α/(α + β) at a rate proportional to −β during
continuous presynaptic excitation and restores to 1 at a rate
proportional to α when the presynaptic input is off. Thus, neural
responses decrease during adaptation due to the depletion of
presynaptic strength and adaptation aftereffects would occur if
test stimuli are presented before the depleted synaptic strength
fully recovers.

Decision Making
In order to account for the decision process employed in the
psychophysical experiments, e.g., decision-making on up or
down motion direction of the test stimuli, we included a related
mechanism in the model. It contains competitive steady-state
responses of two output units, each representing a possible
upward or downward button press motor actions. A soft-max
function is used as an action selection rule to determine the
probability of upward (Pup) or downward (Pdown) output unit
to win the competition between the two actions based on their
values as shown in Equation (11).

Pup =
exp(

Iexup
temp )

exp(
Iexup
temp )+ exp(

Iex
down
temp )

Pdown =
exp(

Iex
down
temp )

exp(
Iexup
temp )+ exp(

Iex
down
temp )

(11)

Iexup = Gθup.v
MT Iexdown = Gθdown.v

MT (12)

Iexup and IexDown are excitatory inputs to the two motor units

and are weighted sum MT responses. Gθup and Gθ
down

are
Gaussian weights in the direction domain with width of 45◦

and their maximum centered at 90◦ and −90◦, respectively.
They can be considered as two direction channels tuned
to the two directions, up and down. temp is a temperature
parameter (Sutton and Barto, 1998) and here, it is adjusted
to replicate the slope of the psychometric curves of
psychophysical results. A detailed neural implementation
of such decision making process is out of the scope
of the paper, though it has been previously suggested
(Grossberg and Pilly, 2008; Raudies and Neumann, 2010b).

Simulation Procedure
Identical procedures as in the real psychophysical experiments
were followed in the model simulations. During adaptation,
the input to the recurrent stage was the motion direction
statistics, Rθ , of the corresponding skewed natural image
sequence. During the test phase, a direction signal centered
at the corresponding test stimuli motion direction and with
Gaussian noise of width 15◦ is fed to the recurrent motion
processing stage. Figure 1 shows the input Rθ for the adapting
image sequences.

From the output stage of the model, at each motion direction
of the test stimulus, Pup corresponds to the observers’ percentage
of upward responses in the psychophysical measurement.
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Pup as a function of the test stimuli motion direction was
then fitted with a cumulative Gaussian using Psignifit 4.0
software (asymptotes set free but assumed to be equal) (Schutt
et al., 2016). The point of subjective equality (PSE), i.e., the
motion direction at 50 percent of upward responses indicated
the motion direction that was perceived as horizontal by
the model.

Other Variants of the Model
Five variants of the suggested model were defined by considering
specific connections and dynamic synapses using the feedback
strength λ, and the synaptic constants α and β as free
parameters. The FB strength λ is used to turn on or off the
FB connection and the rates α and β determine the dynamics
of the synaptic efficacies in the corresponding directions
as follows:

• Model 1: Only FF connection with fast dynamic synapse (λ =

0, αFF = 0.0005, βFF = 9, temp = 0.00001) fitted to replicate
MAE of short adaptation in experiment 1.

• Model 2: Only FF connection with slow dynamic synapse (λ =

0, αFF = 0.5, βFF = 10, temp = 0.001) fitted to replicate MAE
of long adaptation in experiment 2.

• Model 3: FF-FB connection with only fast FF dynamic synapse
(λ = 20, αFF = 1, βFF = 10, αFB = βFB = 0, temp = 0.001)
fitted to replicate MAE of short adaptation in experiment 1.

• Model 4: FF-FB connection with only slow FB dynamic
synapse (λ = 20, αFF = βFF = 0, αFB = 0.04, βFB = 1.2,
temp = 0.001) fitted to replicate MAE of long adaptation in
experiment 2.

• Model 5: FF-FB connection with only slow FB dynamic
synapse (λ = 20, αFF = 1, βFF = 10, αFB = 0.04, βFB = 1.2,
temp = 0.001); bringing together the fitted values of Model
variant 3 and 4.
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