89 research outputs found

    Bauschinger effect in thin metallic films by fem simulations

    Get PDF
    Unpassivated free-standing gold and aluminum thin films (thickness ~ 200-400 nm, mean grain size dm,Au≈ 70-80nm, dm,Al≈ 120-200nm), subjected to tensile tests show Bauschinger effect (BE) during unloading [1, 2]. The focus of this work is to investigate the effect of microstructural heterogeneity such as grain sizes on the BE and the macroscopic deformation behavior in thin metallic films. The finite element code LAGAMINE is used to model the response of films involving sets of grains with different strengths. The numerical results are compared with experimental results from tensile tests on aluminum thin films from the work of Rajagopalan, et al. [2]

    Assessment of the enhanced assumed strain (eas) and the assumed natural strain (ans) techniques in the mechanical behavior of the SSH3D solid-shell element

    Get PDF
    This paper presents the recently developed SSH3D Solid-Shell element implemented in the home-made LAGAMINE finite element code. This element is based on the Enhanced Assumed Strain (EAS) technique and the Assumed Natural Strain (ANS) technique. These techniques permit to avoid locking problems even in very bad conditions (nearly incompressible materials, very thin elements conducting to large aspect ratios, distorted element geometry…). The EAS technique artificially introduces additional degrees of freedom (DOFs) to the element. In the current configuration of the SSH3D element, up to 30 independent DOFs can be added to the 24 classical displacement DOFs (corresponding to the 3 displacements of the 8 element nodes). Contrarily to the nodal displacements, these additional DOFs are not linked between adjacent elements, so that they can be eliminated at the element level during the computation of the solution (before the assembling procedure). Nevertheless, they permit to increase the flexibility of the element which is very efficient for several locking issues. On the other hand, the ANS technique modifies the interpolation scheme for particular strain components. This technique is useful when shear and curvature locking problems are encountered. The ANS technique proved to eliminate the transverse shear locking from the element in bending dominated situations. In the current configuration of the element, four different versions of the ANS technique were implemented in the SSH3D element. Besides, a numerical integration scheme dedicated to Solid-Shell elements was implemented. It uses a user-defined number of integration points along the thickness direction, which permits to increase the element accuracy with a mesh containing a reduced number of elements along the thickness direction. In Sections 2, 3 and 4, the main features of the SSH3D element, i.e. the EAS technique, the ANS technique and the integration scheme are briefly described. Then, in this study, the quality of the element results is assessed in different applications. The effects of the EAS technique and the integration scheme on the volumetric locking and the effects of the ANS technique on the bending behavior of the element are analyzed in Sections 5 and 6

    Design and verification of the Far Ultraviolet Spectrographic Imager (FUV-SI) for the IMAGE mission

    Full text link
    peer reviewedThe IMAGE FUV-SI is simultaneously imaging auroras at 121.8 nm and 135.8 nm. The spectrograph design challenge is the efficient rejection of the intense Lyman-alpha emission at 121.6 nm while passing its Doppler-shifted component at 121.8 nm. The FUV-SI opto-mechanical design, analysis integration, and verification of performances against environment are discussed in this paper. In absence of STM environmental constraints at subsystem levels are derived analytically from F.E.M. and used for pre-qualifying optical subsystems

    Numerical investigations on the influence of the weld surface and die geometry on the resulting tensile stresses in the joining zone during an extrusion process

    Get PDF
    Bulk metal components are often used in areas which are subjected to very high loads. For most technical components, a distinction between structural and functional areas can be made. These areas usually have very different loading profiles, sometimes with contradictory requirements. Nevertheless, nowadays almost only monomaterials are used for the production of bulk metal components. With increasing requirements towards more and more efficient products with lower weight, compact design and extended functionality, these materials are reaching their material-specific limits. A significant increase of product quality and economic efficiency can be expected exclusively with locally adapted properties by combining different materials within one component. In this regard, the focus of this contribution is the production of a hybrid pinion shaft made of the material combination steel (37CrS4) and aluminium (AW6082). The tool concept for extrusion of the hybrid preform, the simulation-based design of the forming process as well as the material characterisation are presented. With the help of the FE-simulation, different serially arranged semi-finished component geometries were investigated in order to minimise the occurring tensile stresses in the component during the extrusion process to prevent failure during forming

    Modelling of an induction heating process and resulting material distribution of a hybrid semi-finished product after impact extrusion

    Get PDF
    Multi-material solutions offer benefits, as they, in contrary to conventional monolithic parts, are customised hybrid components with properties that optimally fit the application locally. Adapted components offer the possibility to use high strength material in areas where external loads require it and substitute them by lightweight material in the other areas. The presented study describes the manufacturing of a hybrid shaft along the process chain Tailored Forming, which uses serial pre-joined semi-finished products in the forming stage. Subject of this study is the numerical modelling of the heating process by induction heating of a hybrid semi-finished product and the resulting material distribution after the impact extrusion process. For this endeavour, a numerical model of an inhomogeneous induction heating process was developed. The main challenge is to determine the boundary conditions such as current intensity acting in the induction coil and the electromagnetic properties of the used material. The current intensity was measured by a Rogowski coil during experimental heating tests. The relative magnetic permeability was modelled as a function of temperature using the method of Zedler. The results show the importance of using a relative magnetic permeability as a function of temperature to guarantee a high quality of the numerical model. Subsequently, the model was applied to the heating of the hybrid semi-finished product consisting of a steel and aluminium alloy. By using inductive heating and thus a resulting inhomogeneous temperature field, good agreement of the material distribution between experiment and simulation could be achieved after the forming process

    A Versatile IoT-Approach to Process Data Acquisition

    Get PDF
    The acquisition and evaluation of process data in production engineering holds great potential. This allows detecting faulty processes at an early stage and processes to be optimized even more efficiently. However, the use of technologies for data acquisition in the manufacturing industry is far less widespread than the mentioned potential implies. This paper presents an Internet of Things approach by means of which production environments can be retrofitted easily and cost-effectively

    Adjusting Mechanical Properties of Forging Dies Produced by Ausforming

    Get PDF
    Due to high thermo-mechanical loads, tools used in hot forming operations need a high resistance to different damage phenomena, such as deformation, cracking and abrasion. They are exposed to cyclic thermo-mechanical stress conditions, which leads to tool failure and subsequent tool replacement during cost-intensive production interruptions. To increase wear resistance, forging tools can be produced in the metastable austenite area. Forming of steel below the recrystallisation temperature, also known as “ausforming”, offers the possibility to increase strength without affecting ductile properties. This is due to grain refinement during forming. In this study, the thermo-mechanical treatment ausforming will be used to form the final contour of forging dies. For this purpose, an analogy study was performed where a cup-preform is ausformed, which represents the inner contour of a highly mechanically loaded forging die. It is investigated to what extent a fine-grained microstructure generated in the last forming stage can be achieved and how it influences the tool's performance. The hot-working tool steel X37CrMoV5-1 (AISI H11) was used as workpiece material. To achieve optimal properties, process routes with tempering temperatures from 300 °C to 500 °C and global true plastic strains of φ = 0.25 and φ = 0.45 were examined. The results were evaluated by pulsation tests, metallographic analysis and hardness measurements of the formed parts. Optimal ausforming parameters were derived to produce a high performance forging die

    Comparison of residual stresses on long rolled profiles measured by X-ray diffraction,ring core and the sectioning methods and simulated by FE method

    Get PDF
    Sheet piles are produced by hot rolling, a cooling step and, if required, by a straightening operation. Numerical simulations indicate that the stress field is almost homogeneous through the thickness, justifying the comparison of X-ray diffraction, ring core and the sectioning methods applied after the cooling step and after the straightening process. The equipment, the steps of the experimental procedures and the results are detailed, showing the limits, the specificities and the advantages of each method. Moreover, the amplitude and the distribution of the stresses along the width of the sections present good agreement with results of numerical simulations

    Implementation of a damage evolution law for dual-phase steels in Gurson-type models

    Get PDF
    This paper is a contribution to the phenomenological modeling of damage evolution in DP steels in the framework of Gurson's approach. It is based on recent results of X-ray tomography in-situ tensile tests and subsequent one-dimensional metallurgical void nucleation models proposed in [C. Landron et al., Scripta Materialia 63 (2010) 973–976]. A macroscopic void nucleation law for DP steels is proposed, covering a wide range of stress triaxialities. The respective effects of nucleation, growth and coalescence are clearly separated. Validations with respect to experimental porosity measurements were performed for several monotonic loading cases and for two loading sequences involving large strains and strain-path changes

    Numerical evaluation of forging process designs of a hybrid co-extruded demonstrator consisting of steel and aluminium.

    Get PDF
    Multi-material solutions represent a promising approach for the production of load-optimised parts. The combination of material-specific advantages of different materials in a single component allows the fulfilment of conflicting requirements e.g. high performance and low weight. Fabrication of hybrid components is challenging due to the dissimilar properties of the individual materials and requires the development of suitable manufacturing technologies. The present paper deals with the simulation-based design of a forming process for the production of a suspension control arm consisting of steel and aluminium. With the focus on material flow, two forming concepts, open-die and closed-die forging, were investigated, in order to ensure the required material distribution similar to the final part. In addition, a tool analysis was carried out to avoid thermo-mechanical overload of the tool system. It was found that the required material distribution can be achieved with both forming concepts. However, a closed-die forging concept is not suitable because of the high stresses in the forging dies exceed the tool steel's strength
    corecore