106 research outputs found

    Oxygen Degradation in Mesoporous Al<inf>2</inf>O<inf>3</inf>/CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3-</inf><inf>x</inf>Cl<inf>x</inf> Perovskite Solar Cells: Kinetics and Mechanisms

    Get PDF
    The rapid pace of development for hybrid perovskite photovoltaics has recently resulted in promising figures of merit being obtained with regard to device stability. Rather than relying upon expensive barrier materials, realizing market-competitive lifetimes is likely to require the development of intrinsically stable devices, and to this end accelerated aging tests can help identify degradation mechanisms that arise over the long term. Here, oxygen-induced degradation of archetypal perovskite solar cells under operation is observed, even in dry conditions. With prolonged aging, this process ultimately drives decomposition of the perovskite. It is deduced that this is related to charge build-up in the perovskite layer, and it is shown that by efficiently extracting charge this degradation can be mitigated. The results confirm the importance of high charge-extraction efficiency in maximizing the tolerance of perovskite solar cells to oxygen.This work was supported by SABIC and by the EPSRC, including by the Supergen Supersolar Consortium (EP/J017361/1) and the European Union Seventh Framework Program [FP7 2007-2003] under grant agreement 604032 of the MESO project. GE is supported by the EPSRC and Oxford Photovoltaics Ltd. through a Nanotechnology KTN CASE award. JW acknowledges the Swire Educational Trust for supporting his D.Phil. study at Oxford. We thank Sian Dutton (University of Cambridge) for access to XRD facilities and Felix Deschler (University of Cambridge) for helpful discussions.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aenm.20160001

    Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites

    Get PDF
    Solar cells based on the organic-inorganic tri-halide perovskite family of materials have shown remarkable progress recently, offering the prospect of low-cost solar energy from devices that are very simple to process. Fundamental to understanding the operation of these devices is the exciton binding energy, which has proved both difficult to measure directly and controversial. We demonstrate that by using very high magnetic fields it is possible to make an accurate and direct spectroscopic measurement of the exciton binding energy, which we find to be only 16 meV at low temperatures, over three times smaller than has been previously assumed. In the room temperature phase we show that the binding energy falls to even smaller values of only a few millielectronvolts, which explains their excellent device performance due to spontaneous free carrier generation following light absorption. Additionally, we determine the excitonic reduced effective mass to be 0.104me (where me is the electron mass), significantly smaller than previously estimated experimentally but in good agreement with recent calculations. Our work provides crucial information about the photophysics of these materials, which will in turn allow improved optoelectronic device operation and better understanding of their electronic properties

    Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water

    Get PDF
    Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr3-based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr3 as an inexpensive and efficient protection strategy. We achieve a record stability of 30 h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm−2 at 1.23 VRHE. We further demonstrate the versatility of our approach by grafting a molecular Ir-based water oxidation catalyst on the electrolyte-facing surface of the sealing graphite sheet, which cathodically shifts the onset potential of the composite photoanode due to accelerated charge transfer. These results suggest an efficient route to develop stable halide perovskite based electrodes for photoelectrochemical solar fuel generation

    Carbon nanotubes in perovskite solar cells

    No full text
    The remarkable optoelectronic properties of metal halide perovskite absorbers have, in the past years, made the perovskite solar cell one of the most promising emerging photovoltaic technologies. The charge collecting layers are essential parts of this type of solar cell. Carbon nanotubes have emerged as a potential candidate to take on this role. Equipped with a range of highly beneficial properties including excellent charge transport characteristics, chemical inertness, as well as mechanical robustness, carbon nanotubes are able to both efficiently extract photogenerated charges, and improve the resilience and stability of a perovskite solar cell. In this Research News article we give a concise overview of the current state-of-the-art of perovskite solar cells in which carbon nanotubes are incorporated as a charge conduction layer

    Carbon nanotubes in perovskite solar cells

    No full text
    The remarkable optoelectronic properties of metal halide perovskite absorbers have, in the past years, made the perovskite solar cell one of the most promising emerging photovoltaic technologies. The charge collecting layers are essential parts of this type of solar cell. Carbon nanotubes have emerged as a potential candidate to take on this role. Equipped with a range of highly beneficial properties including excellent charge transport characteristics, chemical inertness, as well as mechanical robustness, carbon nanotubes are able to both efficiently extract photogenerated charges, and improve the resilience and stability of a perovskite solar cell. In this Research News article we give a concise overview of the current state-of-the-art of perovskite solar cells in which carbon nanotubes are incorporated as a charge conduction layer

    Utilizing nonpolar organic solvents for the deposition of metal-halide perovskite films and the realization of organic semiconductor/perovskite composite photovoltaics

    No full text
    Having captivated the research community with simple fabrication processes and staggering device efficiencies, perovskite-based optoelectronics are already on the way to commercialization. However, one potential obstacle to this commercialization is the almost exclusive use of toxic, highly coordinating, high boiling point solvents to make perovskite precursor inks. Herein, we demonstrate that nonpolar organic solvents, such as toluene, can be combined with butylamine to form an effective solvent for alkylammonium-based perovskites. Beyond providing broader solvent choice, our finding opens the possibility of blending perovskite inks with a wide range of previously incompatible materials, such as organic molecules, polymers, nanocrystals, and structure-directing agents. As a demonstration, using this solvent, we blend the perovskite ink with 6,6-phenyl-C-61-butyric acid methyl ester and show improved perovskite crystallization and device efficiencies. This processing route may enable a myriad of new possibilities for tuning the active layers in efficient photovoltaics, light-emitting diodes, and other semiconductor devices

    Novel carbon nanotube-conjugated polymer nanohybrids produced by multiple polymer processing.

    No full text
    We describe two methods in which we manipulate the binding of multiple conjugated polymers to single-walled carbon nanotubes (SWNTs) to produce new and novel nanostructures. One method fi rst utilizes the selective binding of poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) to a narrow distribution of semiconducting SWNTs and then uses a polymer exchange to transfer this purity to other nanotube-polymer combinations, using technologically useful polymers such as poly(3-hexylthiophene) (P3HT) and poly(9,9'-dioctylfluoreneco -benzothiadiazole) (F8BT) as fi rst examples. The other method involves controlling the competitive binding of P3HT and F8BT to SWNTs to produce coaxial nanostructures consisting of both polymers simultaneously bound in ordered layers. We show that these two simple solution-processing techniques can be carried out sequentially to afford new dual-polymer nanostructures comprised of a semiconducting SWNT of a single chirality. This allows the favorable properties of both polymers and purified semiconducting SWNTs to be implemented into potentially highly efficient organic photovoltaic devices

    Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes

    No full text
    Here, we report the use of polymer-wrapped carbon nanotubes as a means to enhance charge extraction through undoped spiro-OMeTAD. With this approach a good solar cell performance is achieved without the implementation of conventional doping methods. We demonstrate that a stratified two-layer architecture of sequentially deposited layers of carbon nanotubes and spiro-OMeTAD, outperforms a conventional blend of the hole-conductor and the carbon nanotubes. We also provide insights into the mechanism of the rapid hole extraction observed in the two-layer approach

    Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes

    No full text
    Here, we report the use of polymer-wrapped carbon nanotubes as a means to enhance charge extraction through undoped spiro-OMeTAD. With this approach a good solar cell performance is achieved without the implementation of conventional doping methods. We demonstrate that a stratified two-layer architecture of sequentially deposited layers of carbon nanotubes and spiro-OMeTAD, outperforms a conventional blend of the hole-conductor and the carbon nanotubes. We also provide insights into the mechanism of the rapid hole extraction observed in the two-layer approach

    An ultrafast carbon nanotube terahertz polarisation modulator

    No full text
    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies. © 2014 AIP Publishing LLC
    • …
    corecore