1,214 research outputs found

    Manual measurement of retinal bifurcation features

    Get PDF
    This paper introduces a new computerized tool for accurate manual measurement of features of retinal bifurcation geometry, designed for use in investigating correlations between measurement features and clinical conditions. The tool uses user-placed rectangles to measure the vessel width, and lines placed along vessel center lines to measure the angles. An analysis is presented of measurements taken from 435 bifurcations. These are compared with theoretical predictions based on optimality principles presented in the literature. The new tool shows better agreement with the theoretical predictions than a simpler manual method published in the literature, but there remains a significant discrepancy between current theory and measured geometry

    Robust control in the quantum domain

    Get PDF
    Recent progress in quantum physics has made it possible to perform experiments in which individual quantum systems are monitored and manipulated in real time. The advent of such new technical capabilities provides strong motivation for the development of theoretical and experimental methodologies for quantum feedback control. The availability of such methods would enable radically new approaches to experimental physics in the quantum realm. Likewise, the investigation of quantum feedback control will introduce crucial new considerations to control theory, such as the uniquely quantum phenomena of entanglement and measurement back-action. The extension of established analysis techniques from control theory into the quantum domain may also provide new insight into the dynamics of complex quantum systems. We anticipate that the successful formulation of an input-output approach to the analysis and reduction of large quantum systems could have very general applications in non-equilibrium quantum statistical mechanics and in the nascent field of quantum information theory.Comment: 12 pages, 1 figur

    Quantum feedback control and classical control theory

    Get PDF
    We introduce and discuss the problem of quantum feedback control in the context of established formulations of classical control theory, examining conceptual analogies and essential differences. We describe the application of state-observer-based control laws, familiar in classical control theory, to quantum systems and apply our methods to the particular case of switching the state of a particle in a double-well potential

    REVIEW - A reference data set for retinal vessel profiles

    Get PDF
    This paper describes REVIEW, a new retinal vessel reference dataset. This dataset includes 16 images with 193 vessel segments, demonstrating a variety of pathologies and vessel types. The vessel edges are marked by three observers using a special drawing tool. The paper also describes the algorithm used to process these segments to produce vessel profiles, against which vessel width measurement algorithms can be assessed. Recommendations are given for use of the dataset in performance assessment. REVIEW can be downloaded from http://ReviewDB.lincoln.ac.uk

    Nonlinear Quantum Dynamics

    Get PDF
    The vast majority of the literature dealing with quantum dynamics is concerned with linear evolution of the wave function or the density matrix. A complete dynamical description requires a full understanding of the evolution of measured quantum systems, necessary to explain actual experimental results. The dynamics of such systems is intrinsically nonlinear even at the level of distribution functions, both classically as well as quantum mechanically. Aside from being physically more complete, this treatment reveals the existence of dynamical regimes, such as chaos, that have no counterpart in the linear case. Here, we present a short introductory review of some of these aspects, with a few illustrative results and examples.Comment: 13 pages, 3 figures, invited talk at the NATO Advanced Workshop, "Nonlinear Dynamics and Fundamental Interactions," (October, 2004, Tashkent

    Evolution of Efimov States

    Full text link
    The Efimov phenomenon manifests itself as an emergent discrete scaling symmetry in the quantum three-body problem. In the unitarity limit, it leads to an infinite tower of three-body bound states with energies forming a geometric sequence. In this work, we study the evolution of these so-called Efimov states using relativistic scattering theory. We identify them as poles of the three-particle SS matrix and trace their trajectories in the complex energy plane as they evolve from virtual states through bound states to resonances. We dial the scattering parameters toward the unitarity limit and observe the emergence of the universal scaling of energies and couplings -- a behavior known from the non-relativistic case. Interestingly, we find that Efimov resonances follow unusual, cyclic trajectories accumulating at the three-body threshold and then disappear at some values of the two-body scattering length. We propose a partial resolution to this "missing states" problem.Comment: 15 pages, 10 figures
    • 

    corecore