4 research outputs found

    Identification of protein kinase D as a novel contraction-activated kinase linked to GLUT4-mediated glucose uptake independent of AMPK

    Get PDF
    Contraction-induced glucose uptake is only partly mediated by AMPK activation. We examined whether the diacylglycerol-sensitive protein kinase D (PKD; also known as novel PKC isoform mu) is also involved in the regulation of glucose uptake in the contracting heart. As an experimental model, we used suspensions of cardiac myocytes, which were electrically stimulated to contract or treated with the contraction-mimicking agent oligomycin. Induction of contraction at 4 Hz in cardiac myocytes or treatment with 1 mu M oligomycin enhanced (i) autophosphorylation of PKD at Ser916 by 5.1- and 3.8-fold, respectively, (ii) phosphorylation of PKD's downstream target cardiac-troponin-I (cTnI) by 2.9- and 2.1-fold, respectively, and (iii) enzymatic activity of immunoprecipitated PKD towards the substrate peptide syntide-2 each by 1.5-fold. Although AMPK was also activated under these same conditions, in vitro phosphorylation assays and studies with cardiac myocytes from AMPK alpha 2(-/-) mice indicated that activation of PKD occurs independent of AMPK activation. CaMKK beta, and the cardiac-specific PKC isoforms alpha, beta, and epsilon were excluded as upstream kinases for PKD in contraction signaling because none of these kinases were activated by oligomycin. Stimulation of glucose uptake and induction of GLUT4 translocation in cardiac myocytes by contraction and oligomycin each were sensitive to inhibition by the PKC/PKD inhibitors staurosporin and calphostin-C. Together, these data elude to a role of PKD in contraction-induced GLUT4 translocation. Finally, the combined actions of PKD on cTnI phosphorylation and on GLUT4 translocation would efficiently link accelerated contraction mechanics to increased energy production when the heart is forced to increase its contractile activity

    Targeted urine metabolomics with a graphical reporting tool for rapid diagnosis of inborn errors of metabolism

    Get PDF
    The current diagnostic work‐up of inborn errors of metabolism (IEM) is rapidly moving toward integrative analytical approaches. We aimed to develop an innovative, targeted urine metabolomics (TUM) screening procedure to accelerate the diagnosis of patients with IEM. Urinary samples, spiked with three stable isotope‐labeled internal standards, were analyzed for 258 diagnostic metabolites with an ultra‐high performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry (UHPLC‐QTOF‐MS) configuration run in positive and negative ESI modes. The software automatically annotated peaks, corrected for peak overloading, and reported peak quality and shifting. Robustness and reproducibility were satisfactory for most metabolites. Z‐scores were calculated against four age‐group‐matched control cohorts. Disease phenotypes were scored based on database metabolite matching. Graphical reports comprised a needle plot, annotating abnormal metabolites, and a heatmap showing the prioritized disease phenotypes. In the clinical validation, we analyzed samples of 289 patients covering 78 OMIM phenotypes from 12 of the 15 society for the study of inborn errors of metabolism (SSIEM) disease groups. The disease groups include disorders in the metabolism of amino acids, fatty acids, ketones, purines and pyrimidines, carbohydrates, porphyrias, neurotransmitters, vitamins, cofactors, and creatine. The reporting tool easily and correctly diagnosed most samples. Even subtle aberrant metabolite patterns as seen in mild multiple acyl‐CoA dehydrogenase deficiency (GAII) and maple syrup urine disease (MSUD) were correctly called without difficulty. Others, like creatine transporter deficiency, are illustrative of IEM that remain difficult to diagnose. We present TUM as a powerful diagnostic screening tool that merges most urinary diagnostic assays expediting the diagnostics for patients suspected of an IEM
    corecore