81 research outputs found

    Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal tumor control with minimal side effects

    Get PDF
    Purpose: There are already numerous reports about high local control rates in patients with craniopharyngioma but there are only few studies with follow up times of more than 10 years. This study is an analysis of long term control, tumor response and side effects after fractionated stereotactic radiotherapy (FSRT) for patients with craniopharyngioma. Patients and methods: 55 patients who were treated with FSRT for craniopharyngioma were analyzed. Median age was 37 years (range 6–70 years), among them eight children < 18 years. Radiotherapy (RT) was indicated for progressive disease after neurosurgical resection or postoperatively after repeated resection or partial resection. A median dose of 52.2 Gy (50 – 57.6 Gy) was applied with typical dose per fraction of 1.8 Gy five times per week. The regular follow up examinations comprised in addition to contrast enhanced MRI scans thorough physical examinations and clinical evaluation. Results: During median follow up of 128 months (2 – 276 months) local control rate was 95.3% after 5 years, 92.1% after 10 years and 88.1% after 20 years. Overall survival after 10 years was 83.3% and after 20 years 67.8% whereby none of the deaths were directly attributed to craniopharyngioma. Overall treatment was tolerated well with almost no severe acute or chronic side effects. One patient developed complete anosmia, another one’s initially impaired vision deteriorated further. In 83.6% of the cases with radiological follow up a regression of irradiated tumor residues was monitored, in 7 cases complete response was achieved. 44 patients presented themselves initially with endocrinologic dysfunction none of them showed signs of further deterioration during follow up. No secondary malignancies were observed. Conclusion: Long term results for patients with craniopharyngioma after stereotactic radiotherapy are with respect to low treatment related side effects as well as to local control and overall survival excellent

    Comparison of intensity modulated radiotherapy (IMRT) with intensity modulated particle therapy (IMPT) using fixed beams or an ion gantry for the treatment of patients with skull base meningiomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine the potential improvement in treatment planning for patients with skull base meningioma using IMRT compared to carbon ion or proton beams with and without a gantry.</p> <p>Methods</p> <p>Five patients originally treated with photon IMRT were selected for the study. Ion beams were chosen using a horizontal beam or an ion gantry. Intensity controlled raster scanning and the intensity modulated particle therapy mode were used for plan optimization. The evaluation included analysis of dose-volume histograms of the target volumes and organs at risk.</p> <p>Results</p> <p>In comparison with carbon and proton beams only with horizontal beams, carbon ion treatment plans could spare the OARs more and concentrated on the target volumes more than proton and photon IMRT treatment plans. Using only a horizontal fixed beam, satisfactory plans could be achieved for skull base tumors.</p> <p>Conclusion</p> <p>The results of the case studies showed that using IMPT has the potential to overcome the lack of a gantry for skull base tumors. Carbon ion plans offered slightly better dose distributions than proton plans, but the differences were not clinically significant with established dose prescription concepts.</p

    Adjuvant radiotherapy and chemoradiation with gemcitabine after R1 resection in patients with pancreatic adenocarcinoma

    Get PDF
    Background: The purpose of the study was to evaluate the effect of radiation therapy and chemoradiation with gemcitabine (GEM) after R1 resection in patients with pancreatic adenocarcinoma (PAC). Methods: We performed a retrospective analysis of 25 patients who were treated with postoperative radiotherapy (RT) or chemoradiation (CRT) after surgery with microscopically positive resection margins for primary pancreatic cancer (PAC). Median age was 60 years (range 34 to 74 years), and there were 17 male and 8 female patients. Fractionated RT was applied with a median dose of 49.6 Gy (range 36 to 54 Gy). Eight patients received additional intraoperative radiotherapy (IORT) with a median dose of 12 Gy. Results: Median overall survival (mOS) of all treated patients was 22 months (95% confidence interval (CI) 7.9 to 36.1 months) after date of resection and 21.1 months (95% CI 7.6 to 34.6 months) after start of (C)RT. Median progression-free survival (mPFS) was 13.0 months (95% CI 0.93 to 25 months). Grading (G2 vs. G3, P = 0.005) and gender (female vs. male, P = 0.01) were significantly correlated with OS. There was a significant difference in mPFS between male and female patients (P = 0.008). A total of 11 from 25 patients experienced local tumour progression, and 19 patients were diagnosed with either locoregional or distant failure. Conclusions: We demonstrated that GEM-based CRT can be applied in analogy to neoadjuvant protocols in the adjuvant setting for PAC patients at high risk for disease recurrence after incomplete resection. Patients undergoing additive CRT have a rather good OS and PFS compared to historical control patient groups

    Clinical outcome after particle therapy for meningiomas of the skull base: toxicity and local control in patients treated with active rasterscanning

    Get PDF
    Background: Meningiomas of the skull base account for 25–30% of all meningiomas. Due to the complex structure of the cranial base and its close proximity to critical structures, surgery is often associated with substantial morbidity. Treatment options include observation, aggressive surgical intervention, stereotactic or conventional radiotherapy. In this analysis we evaluate the outcome of 110 patients with meningiomas of the skull base treated with particle therapy. It was performed within the framework of the “clinical research group heavy ion therapy” and supported by the German Research Council (DFG, KFO 214). Methods: Between May 2010 and November 2014, 110 Patients with skull base meningioma were treated with particle radiotherapy at the Heidelberg Ion Therapy Center (HIT). Primary localizations included the sphenoid wing (n = 42), petroclival region (n = 23), cavernous sinus (n = 4), sella (n = 10) and olfactory nerve (n = 4). Sixty meningiomas were benign (WHO °I); whereas 8 were high-risk (WHO °II (n = 7) and °III (n = 1)). In 42 cases histology was not examined, since no surgery was performed. Proton (n = 104) or carbon ion (n = 6) radiotherapy was applied at Heidelberg Ion Therapy Center (HIT) using raster-scanning technique for active beam delivery. Fifty one patients (46.4%) received radiotherapy due to tumor progression, 17 (15.5%) after surgical resection and 42 (38.2%) as primary treatment. Results: Median follow-up in this analysis was 46,8 months (95% CI 39,9–53,7; Q1-Q3 34,3–61,7). Particle radiotherapy could be performed safely without toxicity-related interruptions. No grade IV or V toxicities according to CTCAE v4.0 were observed. Particle RT offered excellent overall local control rates with 100% progression-free survival (PFS) after 36 months and 96.6% after 60 months. Median PFS was not reached due to the small number of events. Histology significantly impacted PFS with superior PFS after 5 years for low-risk tumors (96.6% vs. 75.0%, p = 0,02). Overall survival was 96.2% after 60 months and 92.0% after 72 months from therapy. Of six documented deaths, five were definitely not and the sixth probably not meningioma-related. Conclusion Particle radiotherapy is an excellent treatment option for patients with meningiomas of the skull base and can lead to long-term tumor control with minimal side effects. Other prospective studies with longer follow-up will be necessary to further confirm the role of particle radiotherapy in skull base meningioma

    Evaluation of particle radiotherapy for the re-irradiation of recurrent intracranial meningioma

    Get PDF
    Background: With the advance of modern irradiation techniques, the role of radiotherapy (RT) for intracranial meningioma has increased significantly throughout the past years. Despite that tumor’s generally favorable outcome with local control rates of up to 90% after ten years, progression after RT does occur. In those cases, re-irradiation is often difficult due to the limited radiation tolerance of the surrounding tissue. The aim of this analysis is to determine the value of particle therapy with its better dose conformity and higher biological efficacy for re-irradiating recurrent intracranial meningioma. It was performed within the framework of the “clinical research group heavy ion therapy” and funded by the German Research Council (DFG, KFO 214). Methods: Forty-two patients treated with particle RT (protons (n = 8) or carbon ions (n = 34)) for recurrent intracranial meningioma were included in this analysis. Location of the primary lesion varied, including skull base (n = 31), convexity (n = 5) and falx (n = 6). 74% of the patients were categorized high-risk according to histology with a WHO grading of II (n = 25) or III (n = 6), in the remaining cases histology was either WHO grade I (n = 10) or unknown (n = 1). Median follow-up was 49,7 months. Results: In all patients, re-irradiation could be performed safely without interruptions due to side effects. No grade IV or V toxicities according to CTCAE v4.0 were observed. Particle RT offered good overall local control rates with 71% progression-free survival (PFS) after 12 months, 56,5% after 24 months and a median PFS of 34,3 months (95% CI 11,7–56,9). Histology had a significant impact on PFS yielding a median PFS of 25,7 months (95% CI 5,8–45,5) for high-risk histology (WHO grades II and III) while median PFS was not reached for low-risk tumors (WHO grade I) (p = 0,03). Median time to local progression was 15,3 months (Q1-Q3 8,08–34,6). Overall survival (OS) after re-irradiation was 89,6% after 12 months and 71,4% after 24 months with a median OS of 61,0 months (95% CI 34,2–87,7). Again, WHO grading had an effect, as median OS for low-risk patients was not reached whereas for high-risk patients it was 45,5 months (95% CI 35,6–55,3). Conclusion: Re-irradiation using particle therapy is an effective method for the treatment of recurrent meningiomas. Interdisciplinary decision making is necessary to guarantee best treatment for every patient

    Randomized phase II study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma: The CLEOPATRA Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment standard for patients with primary glioblastoma (GBM) is combined radiochemotherapy with temozolomide (TMZ). Radiation is delivered up to a total dose of 60 Gy using photons. Using this treatment regimen, overall survival could be extended significantly however, median overall survival is still only about 15 months.</p> <p>Carbon ions offer physical and biological advantages. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increase relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons.</p> <p>First Japanese Data on the evaluation of carbon ion radiation therapy showed promising results in a small and heterogeneous patient collective.</p> <p>Methods/Design</p> <p>In the current Phase II-CLEOPATRA-Study a carbon ion boost will be compared to a proton boost applied to the macroscopic tumor after surgery at primary diagnosis in patients with GBM applied after standard radiochemotherapy with TMZ up to 50 Gy. In the experimental arm, a carbon ion boost will be applied to the macroscopic tumor up to a total dose of 18 Gy E in 6 fractions at a single dose of 3 Gy E. In the standard arm, a proton boost will be applied up to a total dose 10 Gy E in 5 single fractions of 2 Gy E.</p> <p>Primary endpoint is overall survival, secondary objectives are progression-free survival, toxicity and safety.</p> <p>Discussion</p> <p>The Cleopatra Trial is the first study to evaluate the effect of carbon ion radiotherapy within multimodality treatment of primary glioblastoma in a randomized trial comparing this innovative treatment of the treatment standard, consisitng of photon radiotherapy in combination with temozolomide.</p> <p>Trial Registration</p> <p>ISRCTN37428883 and NCT01165671</p

    Neoadjuvant chemoradiation with Gemcitabine for locally advanced pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To evaluate efficacy and secondary resectability in patients with locally advanced pancreatic cancer (LAPC) treated with neoadjuvant chemoradiotherapy (CRT).</p> <p>Patients and methods</p> <p>A total of 215 patients with locally advanced pancreatic cancer were treated with chemoradiation at a single institution. Radiotherapy was delivered with a median dose of 52.2 Gy in single fractions of 1.8 Gy. Chemotherapy was applied concomitantly as gemcitabine (GEM) at a dose of 300 mg/m<sup>2 </sup>weekly, followed by adjuvant cycles of full-dose GEM (1000 mg/m<sup>2</sup>). After neoadjuvant CRT restaging was done to evaluate secondary resectability. Overall and disease-free survival were calculated and prognostic factors were estimated.</p> <p>Results</p> <p>After CRT a total of 26% of all patients with primary unresectable LAPC were chosen to undergo secondary resection. Tumour free resection margins could be achieved in 39.2% (R0-resection), R1-resections were seen in 41.2%, residual macroscopic tumour in 11.8% (R2) and in 7.8% resection were classified as Rx. Patients with complete resection after CRT showed a significantly increased median overall survival (OS) with 22.1 compared to 11.9 months in non-resected patients. Median OS and disease-free survival (DFS) of all patients were 12.3 and 8.1 months respectively. In most cases the first site of disease progression was systemic with hepatic (52%) and peritoneal (36%) metastases.</p> <p>Discussion</p> <p>A high percentage of patients with locally advanced pancreatic cancer can undergo secondary resection after gemcitabine-based chemoradiation and has a relative long-term prognosis after complete resection.</p

    Dosimetric comparison of different radiation techniques (IMRT vs. 3-dimensional) of the “true” (deep) ano-inguinal lymphatic drainage of anal cancer patients

    Get PDF
    Introduction: The ano-inguinal lymphatic drainage (AILD) is located in the subcutaneous adipose tissue of the proximal medial thigh. Currently, there are no recommendations for an inclusion of the ‘true’ AILD in the clinical target volume (CTV) of definitive chemoradiation for anal cancer patients. To estimate the relevance of inguinal recurrence, we compared the incidental dose to the AILD in anal cancer (AC) patients who were treated either with Volumetric Arc Therapy – Intensity Modulated Radiation Therapy (VMAT-IMRT) or conventional 3D-radiation technique. Methods: One VMAT-IMRT-plans and one 3D-plans were calculated on the same target volumes and identical dose prescription in ten patients. We defined the volume of the AILD on the planning CT-scans based on the information of new fluorescence methods. Furthermore, we defined several anatomical subvolumes of interest inside the AILD. We examined and compared absolute and relative dosimetric parameters of the AILD and different anatomical subunits. Results: The Dmean of the AILD was 40 Gy in the 3D-group and 38 Gy in the IMRT-group. Dmean and Dmedian as well as the V30Gy of the AILD and all subvolumes of the caudal AILD were significant higher using 3D-RT compared to IMRT. Even though the absolute differences were small, in the caudal aspect of the ano-inguinal lymphatic drainage the V30Gy could be more than 10% less with VMAT-IMRT. Conclusions: 3D-RT was slightly superior to IMRT in terms of dose coverage of the AILD. However, the absolute differences were very small. Some relevant caudal parts of the AILD received an insufficient dose for treating potential micrometastases. Particularly in high-risk situations, this may lead to inguinal recurrence and therefore the true deep AILD should be included into the target volume in high risk patients

    High-Resolution Optical Functional Mapping of the Human Somatosensory Cortex

    Get PDF
    Non-invasive optical imaging of brain function has been promoted in a number of fields in which functional magnetic resonance imaging (fMRI) is limited due to constraints induced by the scanning environment. Beyond physiological and psychological research, bedside monitoring and neurorehabilitation may be relevant clinical applications that are yet little explored. A major obstacle to advocate the tool in clinical research is insufficient spatial resolution. Based on a multi-distance high-density optical imaging setup, we here demonstrate a dramatic increase in sensitivity of the method. We show that optical imaging allows for the differentiation between activations of single finger representations in the primary somatosensory cortex (SI). Methodologically our findings confirm results in a pioneering study by Zeff et al. (2007) and extend them to the homuncular organization of SI. After performing a motor task, eight subjects underwent vibrotactile stimulation of the little finger and the thumb. We used a high-density diffuse-optical sensing array in conjunction with optical tomographic reconstruction. Optical imaging disclosed three discrete activation foci one for motor and two discrete foci for vibrotactile stimulation of the first and fifth finger, respectively. The results were co-registered to the individual anatomical brain anatomy (MRI) which confirmed the localization in the expected cortical gyri in four subjects. This advance in spatial resolution opens new perspectives to apply optical imaging in the research on plasticity notably in patients undergoing neurorehabilitation
    corecore