6 research outputs found

    Emerging roles of Keap1/Nrf2 signaling in the thyroid gland and perspectives for bench-to-bedside translation.

    Get PDF
    The signaling pathway centered on the transcription factor nuclear erythroid factor 2-like 2 (Nrf2) has emerged during the last 15 years as a target for the prevention and treatment of diseases broadly related with oxidative stress such as cancer, neurodegenerative and metabolic diseases. The roles of Nrf2 are expanding beyond general cytoprotection, and they encompass its crosstalk with other pathways as well as tissue-specific functions. The thyroid gland relies on reactive oxygen species for its main physiological function, the synthesis and secretion of thyroid hormones. A few years ago, Nrf2 was characterized as a central regulator of the antioxidant response in the thyroid, as well as of the transcription and processing of thyroglobulin, the major thyroidal protein that serves as the substrate for thyroid hormone synthesis. Herein, we summarize the current knowledge about the roles of Nrf2 in thyroid physiology, pathophysiology and disease. We focus specifically on the most recent publications in the field, and we discuss the implications for the preclinical and clinical use of Nrf2 modulators

    Hepatic Fgf21 Expression Is Repressed after Simvastatin Treatment in Mice.

    Get PDF
    Fibroblast growth factor 21 (Fgf21) is a hormone with emerging beneficial roles in glucose and lipid homeostasis. The interest in Fgf21 as a potential antidiabetic drug and the factors that regulate its production and secretion is growing. Statins are the most widely prescribed drug for the treatment of dyslipidemia. However, the function of statins is not limited to the lowering of cholesterol as they are associated with pleiotropic actions such as antioxidant, anti-inflammatory and cytoprotective effects. The recently described effect of statins on mitochondrial function and the induction of Fgf21 by mitochondrial stress prompted us to investigate the effect of statin treatment on Fgf21 expression in the liver. To this end, C57BL6J male mice and primary mouse hepatocytes were treated with simvastatin, and Fgf21 expression was subsequently assessed by immunoblotting and quantitative real-time PCR. Hepatic Fgf21 protein and mRNA and circulating levels of FGF21significantly decreased in mice that had received simvastatin in their food (0.1% w/w) for 1 week. This effect was also observed with simvastatin doses as low as 0.01% w/w for 1 week or following 2 intraperitoneal injections within a single day. The reduction in Fgf21 mRNA levels was further verified in primary mouse hepatocytes, indicating that the effect of simvastatin is cell autonomous. In conclusion, simvastatin treatment reduced the circulating and hepatic Fgf21 levels and this effect warrants further investigation with reference to its role in metabolism

    Interaction of Genetic Variations in NFE2L2 and SELENOS Modulates the Risk of Hashimoto's Thyroiditis.

    Get PDF
    Background: Several single-nucleotide polymorphisms (SNPs) are known to increase the risk of Hashimoto's thyroiditis (HT); such SNPs reside in thyroid-specific genes or in genes related to autoimmunity, inflammation, and/or cellular defense to stress. The transcription factor Nrf2, encoded by NFE2L2, is a master regulator of the cellular antioxidant response. This study aimed to evaluate the impact of genetic variation in NFE2L2 on the risk of developing HT. Methods: In a case-control candidate gene association study, functional SNPs in the NFE2L2 promoter (rs35652124, rs6706649, and rs6721961) were examined either as independent risk factors or in combination with a previously characterized HT risk allele (rs28665122) in the gene SELENOS, encoding selenoprotein S (SelS). A total of 997 individuals from the north of Portugal (Porto) were enrolled, comprising 481 HT patients and 516 unrelated healthy controls. SELENOS and NFE2L2 SNPs were genotyped using TaqMan <sup>®</sup> assays and Sanger sequencing, respectively. Odds ratios (ORs) were calculated using logistic regression, with adjustment for sex and age. Expression of SelS was analyzed by immunohistochemistry in thyroid tissue from HT patients and control subjects. Molecular interactions between the Nrf2 and SelS pathways were investigated in thyroid tissues from mice and in rat PCCL3 thyroid follicular cells. Results: When all three NFE2L2 SNPs were considered together, the presence of one or more minor alleles was associated with a near-significant increased risk (OR = 1.43, p = 0.072). Among subjects harboring only major NFE2L2 alleles, there was no increased HT risk associated with heterozygosity or homozygosity for the SELENOS minor allele. Conversely, in subjects heterozygous or homozygous for the SELENOS risk allele, the presence of an NFE2L2 minor allele significantly increased HT risk by 2.8-fold (p = 0.003). Immunohistochemistry showed reduced expression of SelS in thyroid follicular cells of HT patients. In Nrf2 knockout mice, there was reduced expression of SelS in thyroid follicular cells; conversely, in PCCL3 cells, reducing SelS expression caused reduced activity of Nrf2 signaling. Conclusions: The NFE2L2 promoter genotype interacts with the SELENOS promoter genotype to modulate the risk of HT in a Portuguese population. This interaction may be due to a bidirectional positive feedback between the Nrf2 and SelS pathways

    Mice Hypomorphic for Keap1, a Negative Regulator of the Nrf2 Antioxidant Response, Show Age-Dependent Diffuse Goiter with Elevated Thyrotropin Levels.

    Get PDF
    Background: Familial nontoxic multinodular goiter (MNG) is a rare disease. One of the associated genes is Kelch-like ECH-associated protein 1 (KEAP1), which encodes the main inhibitor of nuclear factor erythroid 2-related transcription factor 2 (Nrf2), a central mediator of antioxidant responses. The association of KEAP1 with familial MNG is based on only two loss-of-function mutations identified in two families, only one of which included proper phenotyping and adequate demonstration of co-segregation of the phenotype and the mutation. There is no experimental evidence from model organisms to support that decreased Keap1 levels can, indeed, cause goiter. This study used mice hypomorphic for Keap1 to test whether decreased Keap1 expression can cause goiter, and to characterize the activation status of Nrf2 in their thyroid. Methods: C57BL/6J Keap1 <sup>flox/flox</sup> (Keap1 knock-down [Keap1 <sup>KD</sup> ]) mice were studied at 3 and 12 months of age. Plasma and thyroid glands were harvested for evaluation of thyroid function tests and for gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Results: Keap1 <sup>KD</sup> mice showed diffuse goiter that began to develop in early adult life and became highly prominent and penetrant with age. The goiter was characterized by a markedly increased size of thyroid follicles, most notably of the colloid compartment, and by absence of thyroid nodules or hyperplasia. Keap1 <sup>KD</sup> mice also showed decreased T4 levels in early adult life that were eventually well compensated over time by increased thyrotropin (TSH) levels. Nrf2 was activated in the thyroid of Keap1 <sup>KD</sup> mice. Despite a known stimulatory effect of Nrf2 on thyroglobulin (Tg) gene transcription and Tg protein abundance, the expression levels were decreased in the thyroid of Keap1 <sup>KD</sup> mice. No clear patterns were observed in the expression profiles of other thyroid hormone synthesis-specific factors, with the exception of Tg-processing and Tg-degrading cathepsins, including an increase in mature forms of cathepsins D, L, and S. Conclusions: Keap1 <sup>KD</sup> mice develop age-dependent diffuse goiter with elevated TSH levels. The precise mechanism accounting for the thyroidal phenotype remains to be elucidated, but it may involve enhanced Tg solubilization and excessive lysosomal Tg degradation

    Nrf2 represses FGF21 during long-term high-fat diet - Induced obesity in mice

    No full text
    OBJECTIVE - Obesity is characterized by chronic oxidative stress. Fibroblast growth factor 21 (FGF21) has recently been identified as a novel hormone that regulates metabolism. NFE2-related factor 2 (Nrf2) is a transcription factor that orchestrates the expression of a battery of antioxidant and detoxification genes under both basal and stress conditions. The current study investigated the role of Nrf2 in a mouse model of long-term highfat diet (HFD)-induced obesity and characterized its crosstalk to FGF21 in this process. RESEARCH DESIGN AND METHODS - Wild-type (WT) and Nrf2 knockout (Nrf2-KO) mice were fed an HFD for 180 days. During this period, food consumption and body weights were measured. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Total RNA was prepared from liver and adipose tissue and was used for quantitative real-time RT-PCR. Fasting plasma was collected and analyzed for blood chemistries. The ST-2 cell line was used for transfection studies. RESULTS - Nrf2-KO mice were partially protected from HFDinduced obesity and developed a less insulin-resistant phenotype. Importantly, Nrf2-KO mice had higher plasma FGF21 levels and higher FGF21 mRNA levels in liver and white adipose tissue than WT mice. Thus, the altered metabolic phenotype of Nrf2-KO mice under HFD was associated with higher expression and abundance of FGF21. Consistently, the overexpression of Nrf2 in ST-2 cells resulted in decreased FGF21 mRNA levels as well as in suppressed activity of a FGF21 promoter luciferase reporter. CONCLUSIONS - The identification of Nrf2 as a novel regulator of FGF21 expands our understanding of the crosstalk between metabolism and stress defense. © 2011 by the American Diabetes Association

    NFE2-Related transcription factor 2 coordinates antioxidant defense with thyroglobulin production and iodination in the thyroid gland

    No full text
    Background: The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known. The antioxidant response system comprising the ubiquitously expressed NFE2-related transcription factor 2 (Nrf2) and its redox-sensitive cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) defends tissues against oxidative stress, thereby protecting against pathologies that relate to DNA, protein, and/or lipid oxidative damage. Thus, it was hypothesized that Nrf2 should also have important roles in maintaining thyroid homeostasis. Methods: Ubiquitous and thyroid-specific male C57BL6J Nrf2 knockout (Nrf2-KO) mice were studied. Plasma and thyroids were harvested for evaluation of thyroid function tests by radioimmunoassays and of gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Nrf2-KO and Keap1-KO clones of the PCCL3 rat thyroid follicular cell line were generated using CRISPR/Cas9 technology and were used for gene and protein expression studies. Software-predicted Nrf2 binding sites on the thyroglobulin enhancer were validated by site-directed in vitro mutagenesis and chromatin immunoprecipitation. Results: The study shows that Nrf2 mediates antioxidant transcriptional responses in thyroid cells and protects the thyroid from oxidation induced by iodide overload. Surprisingly, it was also found that Nrf2 has a dramatic impact on both the basal abundance and the thyrotropin-inducible intrathyroidal abundance of thyroglobulin (Tg), the precursor protein of thyroid hormones. This effect is mediated by cell-autonomous regulation of Tg gene expression by Nrf2 via its direct binding to two evolutionarily conserved antioxidant response elements in an upstream enhancer. Yet, despite upregulating Tg levels, Nrf2 limits Tg iodination both under basal conditions and in response to excess iodide. Conclusions: Nrf2 exerts pleiotropic roles in the thyroid gland to couple cell stress defense mechanisms to iodide metabolism and the thyroid hormone synthesis machinery, both under basal conditions and in response to excess iodide. © 2018 Mary Ann Liebert, Inc
    corecore