40 research outputs found

    β-adrenergic inhibition prevents action potential and calcium handling changes during regional myocardial ischemia

    Get PDF
    β-adrenergic receptor (β-AR) blockers may be administered during acute myocardial infarction (MI), as they reduce energy demand through negative chronotropic and inotropic effects and prevent ischemia-induced arrhythmogenesis. However, the direct effects of β-AR blockers on ventricular electrophysiology and intracellular Ca2+ handling during ischemia remain unknown. Using optical mapping of transmembrane potential (with RH237) and sarcoplasmic reticulum (SR) Ca2+ (with the low-affinity indicator Fluo-5N AM), the effects of 15 min of regional ischemia were assessed in isolated rabbit hearts (n = 19). The impact of β-AR inhibition on isolated hearts was assessed by pre-treatment with 100 nM propranolol (Prop) prior to ischemia (n = 7). To control for chronotropy and inotropy, hearts were continuously paced at 3.3 Hz and contraction was inhibited with 20 μM blebbistatin. Untreated ischemic hearts displayed prototypical shortening of action potential duration (APD80) in the ischemic zone (IZ) compared to the non-ischemic zone (NI) at 10 and 15 min ischemia, whereas APD shortening was prevented with Prop. Untreated ischemic hearts also displayed significant changes in SR Ca2+ handling in the IZ, including prolongation of SR Ca2+ reuptake and SR Ca2+ alternans, which were prevented with Prop pre-treatment. At 5 min ischemia, Prop pre-treated hearts also showed larger SR Ca2+ release amplitude in the IZ compared to untreated hearts. These results suggest that even when controlling for chronotropic and inotropic effects, β-AR inhibition has a favorable effect during acute regional ischemia via direct effects on APD and Ca2+ handling

    A primer on incorporating sex as a biological variable into the conduct and reporting of basic and clinical research studies

    No full text
    The recent move to require sex as a biological variable (SABV), which includes gender, into the reporting of research published by the American Journal of Physiology-Heart and Circulatory Physiology follows a growing, and much-needed, trend by journals. Understandably, there is concern over how to do this without adding considerable work, especially if one’s primary research focus is not on elucidating sex/gender differences. The purpose of this article is to provide additional guidance and examples on how to incorporate SABV into the conduct and reporting of basic and clinical research. Using examples from our research, which includes both studies focused and not focused on sex/gender differences, we offer suggestions for how to incorporate SABV into basic and clinical research studies. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/incorporating-sex-as-a-biological-variable-into-basic-and-clinical-research-studies/

    Measurement of plasma norepinephrine and 3,4-dihydroxyphenylglycol: method development for a translational research study

    No full text
    Abstract Objective Norepinephrine (NE), a sympathetic neurotransmitter, is often measured in plasma as an index of sympathetic activity. To better understand NE dynamics, it is important to measure its principal metabolite, 3,4-dihydroxyphenylglycol (DHPG), concurrently. Our aim was to present a method, developed in the course of a translational research study, to measure NE and DHPG in human plasma using high performance liquid chromatography with electrochemical detection (HPLC-ED). Results After pre-purifying plasma samples by alumina extraction, we used HPLC-ED to separate and quantify NE and DHPG. In order to remove uric acid, which co-eluted with DHPG, a sodium bicarbonate wash was added to the alumina extraction procedure, and we oxidized the column eluates followed by reduction because catechols are reversibly oxidized whereas uric acid is irreversibly oxidized. Average recoveries of plasma NE and DHPG were 35.3 ± 1.0% and 16.3 ± 1.1%, respectively, and there was no detectable uric acid. Our estimated detection limits for NE and DHPG were approximately 85 pg/mL (0.5 pmol/mL) and 165 pg/mL (0.9 pmol/mL), respectively. The measurement of NE and DHPG in human plasma has wide applicability; thus, we describe a method to quantify plasma NE and DHPG in a laboratory setting as a useful tool for translational and clinical research

    Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130

    No full text
    Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10–14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. SIGNIFICANCE STATEMENT Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons innervating the heart begin to make acetylcholine (ACh), which slows heart rate and decreases contractility. Several lines of evidence confirmed that the source of ACh was sympathetic nerves rather than parasympathetic nerves that are the normal source of ACh in the heart. Global application of NE with or without ACh to ex vivo hearts showed that ACh partially reversed the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. That suggests that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility

    Molecular Mechanisms of Sympathetic Remodeling and Arrhythmias

    No full text

    Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130

    No full text
    Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility.Significance statementSympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons innervating the heart begin to make acetylcholine (ACh), which slows heart rate and decreases contractility. Several lines of evidence confirmed that the source of ACh was sympathetic nerves rather than parasympathetic nerves that are the normal source of ACh in the heart. Global application of NE with or without ACh to ex vivo hearts showed that ACh partially reversed the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. That suggests that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility

    Sympathetic Markers are Different Between Clinical Responders and Nonresponders After Left Ventricular Assist Device Implantation

    No full text
    Background Clinical response to left ventricular assist devices (LVADs), as measured by health-related quality of life, varies among patients after implantation; however, it is unknown which pathophysiological mechanisms underlie differences in clinical response by health-related quality of life. Objective The purpose of this study was to compare changes in sympathetic markers (β-adrenergic receptor kinase-1 [βARK1], norepinephrine [NE], and 3,4-dihydroxyphenylglycol [DHPG]) between health-related quality of life clinical responders and nonresponders from pre– to post–LVAD implantation. Methods We performed a secondary analysis on a subset of data from a cohort study of patients from pre– to 1, 3, and 6 months after LVAD implantation. Clinical response was defined as an increase of 5 points or higher on the Kansas City Cardiomyopathy Questionnaire Clinical Summary score from pre– to 6 months post–LVAD implantation. We measured plasma βARK1 level with an enzyme-linked immunosorbent assay and plasma NE and DHPG levels with high-performance liquid chromatography with electrochemical detection. Latent growth curve modeling was used to compare the trajectories of markers between groups. Results The mean (SD) age of the sample (n = 39) was 52.9 (13.2) years, and most were male (74.4%) and received LVADs as bridge to transplantation (69.2%). Preimplantation plasma βARK1 levels were significantly higher in clinical responders (n = 19) than in nonresponders (n = 20) (P = .001), but change was similar after LVAD (P = .235). Preimplantation plasma DHPG levels were significantly lower in clinical responders than in nonresponders (P = .002), but the change was similar after LVAD (P = .881). There were no significant differences in plasma NE levels. Conclusions Preimplantation βARK1 and DHPG levels are differentiating factors between health-related quality of life clinical responders and nonresponders to LVAD, potentially signaling differing levels of sympathetic stimulation underlying clinical response
    corecore