2 research outputs found

    Reduce Effect of Dependent Malicious Sensor Nodes in WSNs using Pairs Counting and Fake Packets

    Get PDF
    In this paper, we propose a new technique for the enhancement of target detection in Wireless Sensor Networks (WSNs) in which sensor nodes are responsible for taking binary decisions about the presence or absence of a given target and reporting the output to the fusion center. We introduce the algorithm; Fail Silent Pair (FSP) to calculate global decision in the fusion center. The FSP algorithm randomly distributes all sensor nodes into pairs then considers pairs of the same local decision. Also, we present new detection and prevention methods to reduce the effect of dependent malicious sensor nodes. The detection method is based on the deception of suspicious sensor nodes with fake packets to detect a subset of the malicious sensor nodes, as these nodes eavesdrop on other sensor nodes packets to use their local decisions as a reference to build an intelligent decision. While the prevention method allows the fusion center to correct local decisions of some malicious sensor nodes with identified strategies, assisting in the increase of the accuracy of global decisions. We introduce a mathematical analysis to verify our methods, in addition to simulation experiments to validate our technique

    Design and Optimization of Pioglitazone Hydrochloride Self-Nanoemulsifying Drug Delivery System (SNEDDS) Incorporated into an Orally Disintegrating Tablet

    No full text
    Pioglitazone Hydrochloride (PGZ) suffers from poor aqueous solubility. The aim of this research was to design orally disintegrating tablets with self-nanoemulsifying properties (T-SNEDDS) to improve the Pioglitazone solubility and dissolution rate. Three liquid self-nanoemulsifying systems (L-SNEDDS) were formulated and evaluated for transmittance percentage, emulsification time, particle size, Poly dispersity index (PDI), percentage of content, solubility and stability. The optimum L-SNEDDS formula was converted to a solidified self-nanoemulsifying drug delivery system (S-SNEDDS) by adsorption on Syloid (SYL). Powder characterization tests, such as flowability tests, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), were performed for the selected S-SNEDDS formulation. Orally disintegrating tablets (ODT) were formulated by blending S-SNEDDS with tableting excipients. The ODT tablet batch composed of Prosolv was selected for tablet quality control tests, such as hardness, friability, disintegration time, content uniformity, weight variation, in vitro release, in vivo studies and accelerated stability studies. ODT tablets showed accepted mechanical properties and rapid disintegration time (<30 s). No drug degradation was observed at 3 months into the accelerated stability study. The optimized L-SNEDDS, S-SNEDDS and ODT (T-SNEDDS), showed significant enhancement of PGZ in vitro dissolution profiles compared to the pure drug (p > 0.05). In vivo pharmacokinetic and pharmacodynamic evaluation of ODTs showed better behavior compared to the raw drug suspension and the commercial tablet (p > 0.05). Orally disintegrating tablets revealed a promising potential to improve Pioglitazone poor aqueous solubility, dissolution profile and bioavailability
    corecore