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Abstract

In this paper, we propose a new technique for the enhancement of target detection in Wireless
Sensor Networks (WSNs) in which sensor nodes are responsible for taking binary decisions about the
presence or absence of a given target and reporting the output to the fusion center. We introduce
the algorithm; Fail Silent Pair (FSP) to calculate global decision in the fusion center. The FSP
algorithm randomly distributes all sensor nodes into pairs then considers pairs of the same local
decision. Also, we present new detection and prevention methods to reduce the effect of dependent
malicious sensor nodes. The detection method is based on the deception of suspicious sensor nodes
with fake packets to detect a subset of the malicious sensor nodes, as these nodes eavesdrop on
other sensor nodes packets to use their local decisions as a reference to build an intelligent decision.
While the prevention method allows the fusion center to correct local decisions of some malicious
sensor nodes with identified strategies, assisting in the increase of the accuracy of global decisions.
We introduce a mathematical analysis to verify our methods, in addition to simulation experiments
to validate our technique.

Keywords: Wireless Sensor Networks (WSN), dependent malicious sensor nodes, detection
and prevention methods.
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1 Introduction
Recently, autonomous sensors have been used in a wide range of various applications. An au-

tonomous sensor consists of the sensor itself and a low-power computational unit. There are many
types of autonomous sensors that can measure different physical phenomena such as temperature,
pressure, sound, vibration, or proximity [19]. The sensor type is selected based on its use. For exam-
ple, a temperature sensor can be used to measure the temperature of a car engine. Furthermore, a
location sensor can be used on a specific area to detect the existence of an object. Since most imple-
mented applications require many autonomous sensors, manufacturers tend to produce cost effective
sensors using low-cost components [7].

A Sensor network is formed by many autonomous sensors. In a wired sensor network, usually, the
star topology is used. A wired sensor network consists of one dominant central node and a group of
sensor nodes physically connected to the central node. All sensor nodes send measurements directly
to the central node to calculate the final decision.

Wired sensor networks were widely used for network reliability due to low interference, low latency,
and privacy [10]. However, the main problem with wired sensor networks is the scalability, specifically
when covering large areas. Adding a new sensor node to the network requires high-cost wire cabling.
along with the complexity of network management. Therefore, Wireless Sensor Networks (WSNs) [15]
were introduced to overcome these problems.

A WSN can be defined as a network of devices, denoted as sensor nodes, which sense the envi-
ronment and send information gathered from the monitored field (e.g. an area or a volume) through
wireless links [4] to a base station called the fusion center. The fusion center is responsible for cal-
culations and decision making. WSNs are flexible, cover large areas, and easy to deploy [12]. WSNs
work in various hostile environments difficult for humans to reach. Moreover, WSNs are inexpensive
and consume low power. Due to these features, WSNs attracted the attention of researchers, and as
a result, several applications were implemented using WSNs [16], [11], and [2].

WSNs are more vulnerable to communication failures due to its nature, being that WSNs have
dynamic network topology which means the number of nodes can vary with time Zhang2016. These
disadvantages make the communication in WSNs less reliable and increase interference. In addition,
network sensor nodes have low computational power [6]. In brief, WSNs are more vulnerable to
attack than wired sensor networks. Therefore, using WSNs for critical applications such as military
applications is risky [17].

WSNs are exposed to different types of attacks in [20] and [3]. For instance, attacks aimed to
affect the calculations of the fusion center, in which malicious sensor nodes send misleading packets to
sabotage the WSN global decision. Network sensor nodes cannot be distinguished due to of the lack
of unique identifiers for each node because of the large number of nodes. Additionally, network sensor
nodes can easily connect and disconnect from the network to save power. Thus, malicious sensor nodes
can easily attack WSNs.

Network sensor nodes in WSNs cannot run complex topologies, and unable to use malicious soft-
ware detection algorithms. Due to these limitations, WSNs suffer from several problems such as lack
of privacy [18] (which is the main security concern) because of the interference between WSNs. Thus,
creating an algorithm which runs in the fusion center has been a research challenge. These algorithms
must include intelligent methods to assist the fusion center with calculating correct decisions as well
as dealing with malicious sensor nodes.

Various types of attacks have been proposed. In [1], attacks have been classified into dependent
and independent attacks. In independent attacks, malicious sensor nodes behave statically during
the entire period of the attack. For example, detecting the existence of an object requires binary
location sensors. Binary location sensors respond either with 1 (present) or 0 (absent). Accordingly,
the fusion center calculates the final result after collecting the measurements from all sensor nodes.
Based on that, independent malicious sensor nodes send false measurements to the fusion center. An
independent malicious sensor node follows one of the following patterns:

• Always-Zero; in which the malicious sensor node always sends zero regardless of the correct
measured value.
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• Always-One; in which the malicious sensor node always sends one regardless of the correct
measured value.

• Always-False; in which the malicious sensor node always sends the opposite of the measured
value.

Therefore, detection of independent attack is easy as it follows a simple pattern.
In dependent attacks, malicious sensor nodes have the ability to modify the values sent to the fusion

center. These sensor nodes can make advanced and intelligent decisions based on WSN’s behavior. If
the malicious sensor nodes are unable to affect the fusion center decision, they will act normally in
order to avoid exposure.

In this paper, we present a new technique for the management of the decision-making process
in the fusion center. We have divided the technique into three phases; the Fail Silent Pair (FSP)
algorithm, the detection phase, and the prevention phase. The fusion center uses the FSP algorithm
to calculate the global decision. While the detection and prevention phases are used to detect a subset
of the malicious sensor nodes and prevent them from influencing the global decision.

The rest of this paper is organized as follows. Section 2 gives some related works. Section 3 presents
the system model. Section 4 details the proposed methods. Section 5 illustrates the simulation results.
Finally, discussion and conclusions are drawn in Section 6 and Section 7, respectively.

2 Related work
In literature, many detection and prevention methods of malicious sensor nodes in WSNs have been

proposed. Authors of [1] proposed an algorithm for detecting all types of malicious sensor nodes in
WSNs, which has enhanced the reliability of network reports. Since the performance of an intelligent
node heavily depends on its reporting order, the algorithm is based on changing the reporting order of
all sensor nodes in the network periodically. This approach is effective and provides accurate results.
However, it only works for the long-term and increases the overhead of the fusion center as well as its
processing time, considering the results depend on many rounds to increase the detection accuracy.

Alternative methods proposed in [5], [14]. The Autoregressive (AR) model was used to detect
and block the malicious sensor nodes. Each sensor node sends its output to the base station, and an
autoregressive predictor computes an estimated value for each node. The base station detects a sensor
node as a malicious node and blocks it if the difference between the sensor’s output and the estimated
value is greater than a chosen threshold. In addition to the autoregressive predictor, a neural predictor
is used in [14] to calculate the estimated value of each node.

Another detection approach proposed in [8]. The authors introduced an abnormality-detection
approach based on the abnormality detection in data mining. In the independent attacks, it is shown
that the attacker can always be detected as the number of spectrum sensing rounds tends towards
infinity. In contrast, a dependent attack is applicable, in which the attackers can avoid detection if
they possess exact information on the miss-detection and false-alarm probabilities.

In [9], attackers have been divided into two types; a static attacker who sends false data to the
sink, and a dynamic attacker who sends both correct and incorrect information to the sink. Malicious
node detection has been studied under the Byzantine attack, in which the attacker has full control
over a subset of verified nodes. The attacker may confuse the system by transmitting packets through
non-optimal paths or dropping packets. This can be done using distributed discovery and probability
state checking in the Byzantine environment.

Protocols for identifying unusual transmissions were presented in [13] to discover malicious sensor
nodes in a WSN by detecting malicious message transmission in a network. A message transmission is
supposedly suspicious if its signal strength is incompatible with its originator’s geographical location.

3 System model
We have considered a WSN under a non-interference environment with a fixed number of sensor

nodes arranged in a star topology. The sensor nodes send their measured values to the fusion center
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in a collision-free Time Division Multiple Access (TDMA) protocol. Sensor nodes were unable to
detect the Media Access Control address (MAC address) of other sensor nodes in the network. Each
sensor node operated independently. All normal sensor nodes had the same behavior giving accurate
measurement values of 80%.

The reporting order is defined as the order in which sensor nodes send their local decisions to the
fusion center. A sensor node with reporting order t will send its local decision after the sensor node
with reporting order t− 1 sends its local decision.

In this paper, we have focused on a specific type of sensor nodes; binary sensor nodes. The binary
sensor node responds by either Present (H1) or Absent (H0).

3.1 Mathematical technique analysis

Let the space of n sensor nodes be defined by S = {si : 1 ≤ i ≤ n}. Each sensor node gives a local
binary decision, denoted by ln , in which

ln =
{

1, for target-present,
0, for target-absent.

The topological pairs space is defined as all possible pairs of n sensor nodes, and one fusion center,
such that T =

(( {Pk:k∈{1,...,n
2}},Fucion Center

))
, in which Pk is a pair of sensor nodes, and n is an even number

of sensor nodes.
If n is an odd integer then we choose a random sensor node, and uses its decision twice (e.g. if

sensor node si was chosen then the first local decision is denoted by 1li, and the second local decision
is denoted by 2li).

For a chosen round ν, we define τν as a collection of distinct random pairs (i.e τν = {Pk = {si, sj} :
i 6= j and i, j ∈ {1, . . . , n}} in which τν ⊆ S×S and ‖τν‖= n/2, in which ‖.‖ is the cardinality (number
of elements)). Also, we define the local decision of the kth pair Pk that consists of the ith and jth

sensor nodes at a certain round ν as lkν : τν 7 −→ {0, 1, φ}, in which

lkν(Pk) = lkν(si, sj) =
{
li, If li

⊕
lj = 0

φ(Ignored), If li
⊕
lj = 1

in which
⊕

is the bitwise XOR operation, Pk = {si, sj}, i, j ∈ {1, . . . , n}, and lkν(si, sj) = lkν(sj , si)
since bitwise the XOR operation is commutative.

The set of local decisions made by τν (all pairs of sensor nodes at a certain round ν) is denoted by
Lν = {lkν : lkν 6= φ, k = 1, . . . , n/2, and i 6= j ∈ {1, . . . , n}} and m = ‖Lν‖≤ n/2. The ignored pairs are
defined as silent pairs with cardinality ‖Silent Pairs‖= n/2−m.

The collection of all possible sets of sensor node pairs that are randomly chosen is denoted by
L = {Lν , ν = 1, . . . ,Πn/2

t=1(2t − 1)}, in which the cardinality of L represents the number of distinct
random rounds the fusion center can runs. The cardinality of L can be calculated by multiplying the
number of choices (n− 1) for the first pair by the number of choices (n− 3) for the second pair, and
so on. More formally, ‖L‖ is determined by the product of all positive odd numbers less than n.

The local performance of each pair Pk is estimated by two factors, which are the local detection
(Pdk

) probability and the false-alarm (Pfk
) probability. Pdk

is the probability that the target is
correctly identified as present by a given pair k when it is actually present (i.e., Pdk

= Pr{lkν = 1|H1}),
while Pfk

is the probability that the target is falsely identified as present by the pair when it is actually
absent (i.e., Pfk

= Pr{lkν = 1|H0}).
The definition of the global detection (PD) probability and the false-alarm (PF ) probability for m

non-silent pairs, is defined as:

PD =
m∑
r=κ

(m
r )∑
t=1

∏
k∈B(m, r)

t

Pdk

∏
k/∈B(m, r)

t

(1− Pdk
) (1)
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and

PF =
m∑
r=κ

(m
r )∑
t=1

∏
k∈B(m, r)

t

Pfk

∏
k/∈B(m, r)

t

(1− Pfk
) (2)

in which B(m, r)
1 , B

(m, r)
2 , . . . , B

(m, r)
(m

r ) represent all the possible
(m
r

)
combinations of r integers drawn from

the interval [1, m]. In order to estimate the reliability of the network, both (PD) and (PF ) probabilities
are combined together to calculate the correct global decision (PCD) probability, given as:

PCD = PH1PD + PH0(1− PF ), (3)

in which PH1 is the probability that the target is present, and PH0 is the probability that the target
is absent.

3.2 Fusion center strategy

The fusion center considers a sensor node as a present sensor node if its local decisions is present,
and as an absent sensor node if its local decision is absent.

The Fusion center uses the K-out-of-n rule. This rule determines that the global decision is present
if the number of present sensor nodes is not less than a certain threshold, denoted by K. Based on
the K-out-of-n rule, the fusion center determines that the target is present if

∑n
k=1 lk ≥ K, and the

target is absent if
∑n
k=1 lk < K.

3.3 Malicious sensor node behavior

In this paper, we have focused on the dependent malicious sensor nodes. Dependent malicious
sensor nodes behave based on local decisions of other sensor nodes in the network. These sensor nodes
can take advanced and intelligent decisions based on network behavior. If the malicious sensor nodes
are unable to affect the fusion center decision, they will act normally in order to avoid exposure.

As assumed, the malicious sensor nodes recognize the value of K, but are unable to figure the
reporting order of other sensor nodes in the network. Moreover, they are unable to distinguish between
malicious and normal sensor nodes.

The behavior of a malicious sensor node depends on its reporting order. A malicious sensor node
with reporting order t has the ability to attend to only local decisions of the previous t−1 sensor nodes
and save these decisions. Suppose Γt is the sum of the first t − 1 local decisions (i.e. Γt = Σt−1

i=1li).
The local decision of a dependent malicious sensor node can be expressed as in Eq. (4), in which DO,
DZ and DF refer to the subsets of dependent malicious sensor nodes with always-one, always-zero,
and always-false strategies, respectively. Also, H means that the dependent malicious sensor node will
choose to act maliciously and send the opposite of its real local decision.

lk =




1, If k ∈ DO,
0, If k ∈ DZ ,
H, If k ∈ DF ,

ifK − (n− t+ 1) ≤ Γt < K

H1, if Γt ≥ K
H0, if Γt < K − (n− t+ 1)

(4)

The dependent malicious sensor node chooses to act normally and report a correct local decision
as the following two cases:

• ifΓt ≥ K : In this case, the number of reported ones in the first t− 1 local decisions is not less
than K. So, regardless of the local decisions of the remaining sensor nodes the global decision
will be present. Therefore, the malicious sensor node will send H1 as a local decision.
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• ifΓt < K − (n− t+ 1): In this case, the number of reported ones in the first t− 1 local decisions
is so low that, even if all the remaining sensor nodes report ones the threshold K is unreachable
and the target will be detected as absent. Therefore, the malicious sensor node will send H0 as
a local decision.

Otherwise, the malicious sensor node will choose to act maliciously because its still has a chance to
influence and amend the global decision (i.e. when K − (n− t+ 1) ≤ Γt < K).

4 Proposed methods
In this section, we introduce the Fail Silent Pair (FSP) algorithm, detection and prevention phases.

The fusion center uses FSP algorithm to calculate the global decision. While the detection and
prevention phases are used to detect a subset of the malicious sensor nodes and prevent them from
influencing the global decision. Both phases require only one iteration with O(n) execution time.
The difference is that the fusion center runs the prevention phase at each round after collecting local
decisions from sensor nodes, while the detection phase runs after every R rounds. Both phases require
additional O(n) memory.

Initially, the fusion center distributes the reporting order of each sensor node in the setup phase.
Upon each round, the fusion center collects local decisions from all sensor nodes in the network.
Subsequently, the fusion center uses the prevention method to reverse the local decision of each sensor
node identified as malicious with a known strategy if it acts maliciously during this round. Afterwards,
the fusion center calculates the global decision using the Fail Silent Pair (FSP) algorithm. According to
each R rounds, the fusion center runs the detection phase to detect a subset of malicious sensor nodes.
The detection method depends on deceiving the malicious sensor nodes in an unrealistic environment
using sequences of fake packets. Depending on the reporting order, some malicious sensor nodes
respond with different local decisions for each sequence of fake packets, thus leading to detection.

4.1 Fail Silent Pair (FSP) algorithm

The fusion center strategy is based on the Fail Silent Pair (FSP) algorithm. The fail silence method
is discussed in [22]. A component using the fail silence method either provides a correct result or none
at all. The FSP algorithm uses the same approach to handle the local decisions of sensor nodes.
All sensor nodes send their local decisions to the fusion center. When the fusion center collects all
local decisions, it randomly distributes all sensor nodes into pairs. Then, initializes two counters; one
for present pairs and another for absent pairs. Finally, the fusion center runs the FSP algorithm to
calculate the global decision. This process is done in each round.

The FSP algorithm takes into consideration the pair Pk if both sensor nodes of the pair have the
same local decision. In case the local decisions of both sensor nodes at Pk are present, the fusion
center increases the number of present pairs. In case the local decisions of both sensor nodes at Pk are
absent, the fusion center increases the number of absent pairs. Otherwise, the fusion center ignores
the pair Pk.

In our technique we consider κ to be a dynamic threshold computed as κ = dKn ×me, in which
m = ‖Lν‖. κ value is variable since the value ofm can be variable at each round ν. The FSP algorithm
uses κ−out−of−n to calculate the global decision. This rule determines that the global detection is
present if the number of present pairs is larger than κ. The mathematical formula of the κ−out−of−n
is represented by (5), in which lkν ∈ Lν .

G =
{

1 ≡ target-present, If
∑m
k=1 l

k
ν ≥ κ,

0 ≡ target-absent, If
∑m
k=1 l

k
ν < κ,

(5)

Comparing the local decisions of two sensor nodes within the same pair reduces the effect of
incorrect local decisions. Incorrect local decisions may be reported either by a malicious sensor node
or by a normal sensor node giving accurate measurement values of 80%. Since we cannot determine
which sensor node has an incorrect local decision, we exclude the pair. This is the principle of the
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Algorithm 1 Pseudocode of Fail Silent Pair Algorithm
1: function FSP (N, K, LocalDecision)
2: RandomPer← Permutation(1, N)
3: AbsentPairs← 0
4: PresentPairs← 0
5: for i← 1 to N / 2 do
6: P1← LocalDecision[RandomPer[i]]
7: P2← LocalDecision[RandomPer[i + 1]]
8: if P1 + P2 = 2 then
9: PresentPairs← PresentPairs + 1

10: else if P1 + P2 = 0 then
11: AbsentPairs← AbsentPairs + 1
12: end if
13: end for
14: κ = d((K / N)× (PresentPairs + AbsentPairs))e
15: if PresentPairs ≥ κ then
16: GlobalDecision← 1
17: else
18: GlobalDecision← 0
19: end if
20: return GlobalDecision
21: end function

Fail Silent Pair algorithm; either to consider the local decision of a pair if both sensor nodes in the
pair agree on the same local decision, or to ignore the pair if there is a difference between the local
decisions of the sensor nodes in the pair.

4.1.1 FSP algorithm - Example

Fusion Center

si1 , sj1

l1ν1

si2 , sj2

l2ν1

si3 , sj3

l3ν1

si4 , sj4

l4ν1

si5 , sj5l5ν1

Figure 1: FSP algorithm
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Table 1: Fusion center decision.

Sensor ID i1 j1 i2 j2 i3 j3 i4 j4 i5 j5
Local Decision of the sensor node 1 0 0 0 1 1 0 0 1 0
Local Decision of the pair (lkν1) Drop 0 1 0 Drop

To better understand the FSP algorithm, let us consider a fusion center with 8 sensor nodes as
shown in Figure 1, in which the fusion center has the local decisions of each sensor node. Initially,
the fusion center randomly distributes the sensor nodes into pairs then runs the FSP algorithm. The
global decision of the fusion center is H0 (absent), as the number of absent pairs is larger than the
number of present pairs (in which si1 , . . . , sin and sj1 , . . . , sjn in Figure 1 are randomly chosen from
the set of sensor nodes S. The pairwise counting technique is shown in table 1).

4.2 The detection phase

As mentioned in Section 3.3, a malicious sensor node with a reporting order t attends to the
previous t − 1 local decisions and saves them to determine if they act normally or maliciously. This
means the reporting order plays an important role in the malicious sensor node decision. For that
purpose, the fusion center uses the reporting order feature to detect the malicious sensor nodes.

As assumptions, the target will be under a certain situations (either present or absent) before
starting the detection phase, and its situations will not change until the end of the phase.

The fusion center assumes that each sensor node in the network is a suspicious sensor node. A
suspicious sensor node is a sensor node that may be a malicious sensor node, in which the fusion
center must test its behavior to determine its type (either normal or malicious). In order to detect the
malicious sensor nodes, the fusion center sends two sequences of fake packets to all suspicious sensor
nodes and collects the local decisions of all sensor nodes after each sequence.

The detection technique is based on the dependent malicious sensor nodes strategy as described
in 3.3. The aim of the algorithm is to trick a suspicious sensor node with two sequences of fake
packets denoted by F1 and F2, respectively, and requests the local decision of the sensor node after
each sequence. Building the sequences of fake packets depends on the reporting order of the suspicious
sensor node. Assuming the existence of a suspicious sensor node with t as a reporting order, then F1
will contains t − 1 packets such that all of them are ones (i.e. F1 = (1, · · · , 1 )), and F2 will contains
t− 1 packets such that all of them are zeros (i.e. F2 = (0, · · · , 0 )), in which in both sequences the ith
packets denotes the local decision of the ith sensor node (1 ≤ i < t).

Because of the nature of the sensor nodes (i.e. sensor nodes are low power consumption units), the
malicious sensor nodes are unable to distinguish between normal and fake packets. So, a malicious
sensor node will attend to fake packets and save them as normal packets sent from another sensor
node in the network. This will create an unrealistic environment for the malicious sensor node, thus
send its local decisions based on this environment. In contrast, a normal sensor node will not interact
with fake packets, and send a correct local decision (of 80% accuracy).

If the suspicious sensor node is normal, its local decision will be identical for both sequences F1
and F2. On the other hand, if the suspicious sensor node is malicious, its strategy may force it to
respond, in some cases, with two different local decisions, thus, be detected as a malicious sensor node.

Based on that, the fusion center can detect a subset of malicious sensor nodes, as follows:

• If t > K, the malicious sensor node will respond with H1 for F1 and with H0 for F2. Hence, be
detected as malicious.

• If t ≤ K and K − (n− t+ 1) > 0, then we have two cases, as follows:

– If the strategy of the malicious sensor node is always-one, it will respond with H1 for F1
and with H0 for F2. Thus, be detected as malicious.

– If the strategy of the malicious sensor node is always-false and the target is currently absent
(i.e. H = H0), it will respond with H1 for F1 and with H0 for F2. Thus, be detected as
malicious.
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Algorithm 2 Pseudocode of Detection Algorithm
function FakePackets (N)

2: for i← 1 to N do
NodeState[i]← Normal

4: end for
for i← 1 to N do

6: F1← GetOnes(i)
Send F1

8: Receive LocalDecision1
F2← GetZeros(i)

10: Send F2
Receive LocalDecision2

12: if LocalDecision1 6= LocalDecision2 then
NodeState[i]←Malicious_Unknown

14: end if
end for

16: return NodeState
end function

When the fusion center detects a suspicious sensor node as malicious, it will not be able to identify
its strategy. Therefore, the fusion center considers the strategy of new malicious sensor nodes as
unknown at the end of the detection phase.

The fusion center does not run the detection phase at each round as there is a small percentage
of change in the network topology between successive rounds. Instead, the fusion center runs the
detection phase after every R rounds. The fusion center cannot guarantee the integrity of the network
by running the detection phase once as some normal sensor nodes may be compromised with time.
So, the detection phase must run periodically.

4.3 The prevention phase

As shown in Section 4.2, the fusion center can detect a subset of the malicious sensor nodes,
assisting in the prevention of influencing the global decision. When a malicious sensor node has been
detected, the fusion center cannot prevent it from sending its local decisions. As a substitute, the
fusion center takes advantage of its knowledge of the behavior of malicious sensor nodes to correct
their local decisions if possible and use the amended decisions alongside local decisions of normal
sensor nodes to calculate the global decision using FSP algorithm.

The fusion center must identify the strategy of malicious sensor nodes to correct its local deci-
sion. The fusion center can only correct local decisions of malicious sensor nodes with always-false.
Therefore, the fusion center ignores local decisions of other malicious sensor nodes with strategies but
always-false.

The fusion center tracks the strategy of each malicious sensor node to handle its local decision
(i.e. either to ignore or to correct it). Recall that when the fusion center detects a suspicious sensor
node as a malicious, it will not be able to identify its strategy. Therefore, fusion center considers the
strategy of new malicious sensor nodes as unknown at the end of the detection phase.

The fusion center runs the prevention phase at each round after collecting local decisions of all
sensor nodes and before calculating the global decision. The prevention phase depends on the behavior
of malicious sensor nodes, and the saved strategy and current local decision of each malicious sensor
node. The prevention method is divided into 7 rules as shown in Table 2:
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Table 2: Rules of prevention method.

Saved Strategy Local Decision New Strategy New Local Decision
Unknown Present Always One Present
Unknown Absent Always Zero Absent

Always One Present Always One Present
Always Zero Absent Always Zero Absent
Always One Absent Always False

Reverse the local decisionAlways Zero Present Always False
Always False Present or Absent Always False

Based on expression 4, the fusion center can determine if a malicious sensor node is acting normally
or maliciously. So, The prevention method is only used with malicious sensor nodes whose has been
identified as acting maliciously during this round.

When the prevention phase is over, the fusion center runs the FSP algorithm to calculate the
global decision. The FSP algorithm will take into consideration normal sensor nodes, malicious sensor
nodes acting normally, and malicious sensor nodes acting maliciously with always-false saved strategies
during this round.

Algorithm 3 Pseudocode of Prevention Algorithm
function PreventionAlgorithm (N, K, LocalDecision, NodeState)

NewLocalDecision← LocalDecision
3: for i← 1 to N do

Sum← SumOfLocalDecision(LocalDecision, 1, i)
if NodeState[i] 6= Normal and Sum ≥ K− (N− i + 1) and Sum < K then

6: if NodeState[i] = Malicious_Unknown then
if LocalDecision[i] = 1 then

NodeState[i]← Always_One
9: else

NodeState[i]← Always_Zero
end if

12: else if NodeState[i] = Always_One and LocalDecision[i] = 0 then
NodeState[i]← Always_False

else if NodeState[i] = Always_Zero and LocalDecision[i] = 1 then
15: NodeState[i]← Always_False

end if
if NodeState[i] = Always_False then

18: NewLocalDecision[i]← 1− LocalDecision[i]
end if

end if
21: end for

return NewLocalDecision
end function

5 Results
In this section, we present the simulation results to evaluate our methods. The simulation was

done using Matlab R2017a platform and Ubuntu 16.04 LTS machine. We define the Success Rate as
the ratio between the number of rounds in which the fusion center finds a correct global decision to
the total number of rounds.

In this section, Percentage of H1 is defined as the probability that the target is actually present in
each round. This value is used to generate an assumed global decisions for each round before starting
the simulation.
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Figure 2: FSP algorithm versus counting sensor nodes technique.

5.1 Compare FSP algorithm with counting sensor nodes technique

We compare the performance of FSP algorithm against a previous technique such as the counting
sensor nodes technique over a different number of malicious sensor nodes. The FSP algorithm was
introduced in Section 4.1. While counting sensor nodes was explained in Section 3.2. Figure 2 shows
the results of the comparison in different parameters. Table 3 shows the used parameters for each
experiment, and the Improvement Rate. The Improvement Rate is defined as the ratio between the
number of cases in which FSP algorithm is better than the counting sensor node technique to the total
number of cases.

Table 3: Used parameters for each experiment in Figure 2

Figure Rounds n K Malicious Sensor Nodes Percentage
of H1

Improvement
Rate

DO DZ DF
2a 100 20 0.6× n 100% 0 0 50% 90.48%
2b 100 20 0.6× n 0 100% 0 50% 100%
2c 100 20 0.6× n 0 0 100% 95% 95.24%
2d 100 20 0.6× n 30% 30% 40% 95% 90.48%

The results show that the FSP algorithm performs better than the counting sensor nodes technique
in different scenarios and with at least 90.00% improvement rate.

5.2 Detection and prevention

We compare the FSP algorithm with detection and prevention methods to the FSP algorithm
without detection and prevention against the counting sensor node technique. Figure 3 results of the
comparison in different parameters. Table 4 shows the used parameters for each experiment, and the
Improvement Rate. The Improvement Rate is defined as the ratio between the number of cases in
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which the FSP algorithm with detection and prevention is better than the FSP algorithm without
detection and prevention to the total number of cases.

Table 4: Used parameters for each experiment in Figure 3

Figure Rounds n K Malicious Sensor Nodes Percentage
of H1

Improvement
Rate

DO DZ DF
3a 100 20 0.6× n 100% 0 0 50% 100%
3b 100 20 0.6× n 0 100% 0 50% 100%
3c 100 20 0.6× n 0 0 100% 95.00% 100%
3d 100 20 0.6× n 30.00% 30.00% 40.00% 95.00% 90.48%
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Figure 3: Compare the performance of FSP algorithm with and without detection and prevention.

The results show that using the detection and prevention methods increase the performance of the
FSP algorithm with at least 90% improvement rate.

5.3 K− thresholds values

The fusion center uses K value to calculate κ that is used to determine if the target is either
present or absent. Choosing K value will significantly affect the performance of the fusion center.
Figure 4 shows the performance of the fusion center under different values of K and different numbers
of malicious sensor nodes. Table 5 shows the used parameters for experiments in Figure 4.

Table 5: Used parameters for experiments in Figure 4.

Figure Rounds n Malicious Sensor Nodes Percentage of H1
DO DZ DF

4 100 16 0 0 100% 50%
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Figure 5: Detection rate over different number of malicious sensor nodes.
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Figure 4: Performance of the fusion center with different values of K.

5.4 Fake packets detection technique

The detection technique using fake packets was introduced in Section 4.2. We have evaluated the
performance of this technique in Figure 5. Table 6 shows the used parameters for each experiment
in Figure 5. In Figure 5, the Detection Rate is defined as the ratio between the number of malicious
sensor nodes identified as malicious to the total number of malicious sensor nodes.

Table 6: Used parameters for experiments in Figure 5.

Scenario Rounds n K Malicious Sensor Nodes Percentage of H1
DO DZ DF

S1 100 20 0.6× n 100% 0 0 50%
S2 100 20 0.6× n 0 100% 0 50%
S3 100 20 0.6× n 0 0 100% 50%
S4 100 20 0.6× n 30% 30% 40% 50%

The results show that using the fake packets technique assists the fusion center in reducing the
effect of malicious sensor nodes through its ability to detect some.

After detecting a sensor node as malicious, the fusion center must identify its strategy in order to
correct its local decision. Figure 6 studies the fusion center’s ability identify strategies of malicious
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sensor nodes. Table 7 shows the used parameters for experiment in Figure 6. In Figure 6, the
Detection Rate is defined as the ratio between the number of malicious sensor nodes with correct
identified strategies to the total number of malicious sensor nodes of that strategy.

Table 7: Used parameters for experiment in Figure 6.

Rounds n K Malicious Sensor Nodes Percentage of H1
DO DZ DF

100 20 0.60× n 30.00% 30.00% 40.00% 50.00%
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Figure 6: Identifying strategies of malicious sensor nodes.

The results show that the fusion center is able to identify strategies of always-one and always-false
malicious sensor nodes with various detection rates. Moreover, the results show that malicious sensor
nodes with always-zero strategy are able to withstand the fake packets technique.

6 Discussion
In this paper, we have introduced a new technique to improve the performance of target detection

in Wireless Sensor Networks (WSNs). Our technique is divided into three phases: the Fail Silent Pair
(FSP) algorithm, the detection phase based on the fake packets technique, and the prevention phase.

The FSP algorithm was introduced in Section 4.1. The FSP algorithm randomly distributes the
sensor nodes into pairs. Then it takes into consideration the pair Pk if both sensor nodes in the pair
have the same local decision. Otherwise, the FSP algorithm ignores the pair Pk. Section 5.1 shows
that the FSP improves the accuracy of the global decision. However, we think the FSP algorithm
will have a larger effect when utilized with other types of sensors such as sensors with the ability to
measure distance or determine location.

The detection technique was introduced in Section 4.2. The detection technique is based on
misleading malicious sensor nodes with an unrealistic environment using sequences of fake packets.
Section 5.4 showed that this technique assists the fusion center to reduce the effect of malicious sensor
nodes through its ability to detect some.

The prevention technique was introduced in Section 4.3. The fusion center uses the prevention
technique to correct the local decisions of malicious sensor nodes of always-false strategy. Section 5.4
fusion center’s ability to identify the strategies of malicious sensor nodes. The fusion center is able to
identify strategies of always-one and always-false malicious sensor nodes with various detection rates.
In contrast, malicious sensor nodes with always-zero strategies can be detected as malicious as shown
in Figure 5, but the fusion center is incapable to identify their strategy as shown in Figure 6.
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The introduced methods can enhance the fusion center’s performance and the accuracy of the
global decision. However, more improvements can be made. Future work will focus on using other
types of sensor nodes, enhancing the detection and prevention methods to increase the detection rate,
optimizing the fake packets technique to reduce the overhead of the fusion center, and using artificial
intelligence to optimize the process of choosing the system’s parameters (e.g. K, R, etc.).

7 Conclusions
In this paper, we have presented a new and simple technique to improve the performance of target

detection in Wireless Sensor Networks (WSNs). We introduced the Fail Silent Pair (FSP) algorithm to
calculate the global decision in the fusion center. The FSP algorithm randomly distributes all sensor
nodes into pairs then only consider pairs in which both sensor nodes have the same local decision. This
technique can reduce the effect of incorrect local decisions. Also, we introduced a new technique to
improve the detection of dependent malicious sensor nodes in the network leading to the improvement
of the accuracy of the global decision. The detection technique depends on misleading the malicious
sensor nodes with an unrealistic environment using sequences of fake packets. A malicious sensor node
will respond with different local decisions for each sequence of fake packets, leading to its detection.
Finally, we introduced a new prevention technique to handle the local decisions of the malicious sensor
nodes. This technique is based on prior knowledge of the behavior of malicious sensor nodes. The
fusion center runs the prevention technique before calculating the global decision to reverse local
decisions of malicious sensor nodes of identified strategies. This assists in improving the accuracy of
the global decision.
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