22 research outputs found

    Decoupling Solution to SUSY Flavor Problem via Extra Dimensions

    Get PDF
    We discuss the decoupling solution to SUSY flavor problem in the fat brane scenario. We present a simple model to yield the decoupling sfermion spectrum in a five dimensional theory. Sfermion masses are generated by the overlap between the wave functions of the matter fields and the chiral superfields on the SUSY breaking brane. Two explicit examples of the spectrum are given.Comment: 8 pages, LaTe

    (S)fermion Masses in Fat Brane Scenario

    Get PDF
    We discuss the fermion mass hierarchy and the flavor mixings in the fat brane scenario of a five dimensional SUSY theory. Assuming that the matter fields lives in the bulk, their zero mode wave functions are Gaussians, and Higgs fields are localized on the brane, we find simple various types of the matter configurations generating the mass matrices consistent with experimental data. Sfermion mass spectrum is also discussed using the matter configurations found above. Which type of squark mass spectra (the degeneracy, the decoupling and the alignment) is realized depends on the relative locations of SUSY breaking brane and the brane where Higgs fields are localized.Comment: 18 pages, LaTe

    Aspects of Phase Transition in Gauge-Higgs Unification at Finite Temperature

    Full text link
    We study the phase transition in gauge-Higgs unification at finite temperature. In particular, we obtain the strong first order electroweak phase transition for a simple matter content yielding the correct order of Higgs mass at zero temperature. Two stage phase transition is found for a particular matter content, which is the strong first order at each stage. We further study supersymmetric gauge models with the Scherk-Schwarz supersymmetry breaking. We again observe the first order electroweak phase transition and multi stage phase transition.Comment: 18 pages, 7 figures, references corrected, minor correctio

    Finite Gluon Fusion Amplitude in the Gauge-Higgs Unification

    Full text link
    We show that the gluon fusion amplitude in the gauge-Higgs unification scenario is finite in any dimension regardless of its nonrenormalizability. This result is supported by the fact that the local operator describing the gluon fusion process is forbidden by the higher dimensional gauge invariance. We explicitly calculate the gluon fusion amplitude in an arbitrary dimensional gauge-Higgs unification model and indeed obtain the finite result.Comment: 15 pages, final version to appear in MPL

    Gauge-Higgs Dark Matter

    Full text link
    When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)\timesU(1)_X gauge-Higgs unification model compactified on the S1/Z2S^1/Z_2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.Comment: 16 pages, 2 figure

    Realistic construction of split fermion models

    Get PDF
    The Standard Model flavor structure can be explained in theories where the fermions are localized on different points in a compact extra dimension. We show that models with two bulk scalars compactified on an orbifold can produce such separations in a natural way. We study the shapes and overlaps of the fermion wave functions. We show that, generically, realistic models of Gaussian overlaps are unnatural since they require very large Yukawa couplings between the fermions and the bulk scalars. We give an example of a five dimensional two scalar model that accounts naturally for the observed quark masses, mixing angles and CP violation.Comment: 15 pages, 5 figures, typos corrected, discussion on the implications of SM rare decay processes added, to appear in PR

    Solitonic supersymmetry restoration

    Full text link
    Q-balls are a possible feature of any model with a conserved, global U(1) symmetry and no massless, charged scalars. It is shown that for a broad class of models of metastable supersymmetry breaking they are extremely influential on the vacuum lifetime and make seemingly viable vacua catastrophically short lived. A net charge asymmetry is not required as there is often a significant range of parameter space where statistical fluctuations alone are sufficient. This effect is examined for two supersymmetry breaking scenarios. It is found that models of minimal gauge mediation (which necessarily have a messenger number U(1)) undergo a rapid, supersymmetry restoring phase transition unless the messenger mass is greater than 10^8 GeV. Similarly the ISS model, in the context of direct mediation, quickly decays unless the perturbative superpotential coupling is greater than the Standard Model gauge couplings.Comment: 17 pages, 3 figures, minor comments added, accepted for publication in JHE

    Dynamical completions of generalized O'Raifeartaigh models

    Get PDF
    We present gauge theory completions of Wess-Zumino models admitting supersymmetry breaking vacua with spontaneously broken R-symmetry. Our models are simple deformations of generalized ITIY models, a supersymmetric theory with gauge group Sp(N), N+1 flavors plus singlets, with a modified tree level superpotential which explicitly breaks (part of) the global symmetry. Depending on the nature of the deformation, we obtain effective O'Raifeartaigh-like models whose pseudomoduli space is locally stable in a neighborhood of the origin of field space, or in a region not including it. Hence, once embedded in direct gauge mediation scenarios, our models can give low energy spectra with either suppressed or unsuppressed gaugino mass.Comment: 21 pages, 1 figure; v3: reference adde

    An Extension for Direct Gauge Mediation of Metastable Supersymmetry Breaking

    Full text link
    We study the direct mediation of metastable supersymmetry breaking by a \Phi^2-deformation to the ISS model and extend it by splitting both Tr\Phi and Tr\Phi^2 terms in the superpotential and gauging the flavor symmetry. We find that with such an extension the enough long-lived metastable vacua can be obtained and the proper gaugino masses can be generated. Also, this allows for constructing a kind of models which can avoid the Landau pole problem. Especially, in our metastable vacua there exist a large region for the parameter m_3 which can satisfy the phenomenology requirements and allow for a low SUSY breaking scale (\sim 100 TeV).Comment: version in Europhys. Let

    The Discrete Composite Higgs Model

    Full text link
    We describe a concrete, predictive incarnation of the general paradigm of a composite Higgs boson, which provides a valid alternative to the standard holographic models in five space-time dimensions. Differently from the latter, our model is four-dimensional and simple enough to be implemented in an event generator for collider studies. The model is inspired by dimensional deconstruction and hence it retains useful features of the five-dimensional scenario, in particular, the Higgs potential is finite and calculable. Therefore our setup, in spite of being simple, provides a complete description of the composite Higgs physics. After constructing the model we present a first analysis of its phenomenology, focusing on the structure of the Higgs potential, on the constraints from the EWPT and on the spectrum of the new particles.Comment: 42 pages, 10 figures; v2: minor changes and references added; v3: version published in JHE
    corecore