16 research outputs found

    Gene editing and Rett syndrome: does it make the cut?

    Get PDF
    Rett syndrome (RTT) is a rare neurogenetic disorder caused by pathogenic variants of the Methyl CpG binding protein 2 (MECP2) gene. The RTT is characterized by apparent normal early development followed by regression of communicative and fine motor skills. Comorbidities include epilepsy, severe cognitive impairment, and autonomic and motor dysfunction. Despite almost 60 clinical trials and the promise of a gene therapy, no cure has yet emerged with treatment remaining symptomatic. Advances in understanding RTT has provided insight into the complexity and exquisite control of MECP2 expression, where loss of expression leads to RTT and overexpression leads to MECP2 duplication syndrome. Therapy development requires regulated expression that matches the spatiotemporal endogenous expression of MECP2 in the brain. Gene editing has revolutionized gene therapy and promises an exciting strategy for many incurable monogenic disorders, including RTT, by editing the native locus and retaining endogenous gene expression. Here, we review the literature on the currently available editing technologies and discuss their limitations and applicability to the treatment of RTT

    Banks of Cryopreserved Skin from Live Donors and Total Skin Allografts in the Surgery of Major Burnt Patients

    Get PDF
    Scarectomy and prompt coverage are some of the main cornerstones of the actual treatment of major burnt patients. This coverage can be definitive using autologous tissues or temporary with allografts, xenografts, and/or biosynthetic products. Skin allografts (SAs) are the gold standard therapeutic alternative among temporary coverages, since they mimic skin functions. However, cadaveric skin donation and procurement, a common SA source, are infrequent. On the other hand, there is a significant number of patients that, given their health condition, large amounts of skin must be resected for their clinical recovery, including patients submitted to corporal contouring surgeries with esthetic and/or reconstructive motives, usually eliminating the redundant skin as biological waste. This study describes a skin bank model from live donors and cryopreserved total skin cutaneous allografts (CTSCAs), a new type of SA resulting from a particular skin processing

    Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding

    Get PDF
    Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.O

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding

    Get PDF
    Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems

    3D characterization of magnetic phases through neutron polarization contrast tomography

    No full text
    The advancement of laser-based metal additive manufacturing has enabled the production of near net shape complex geometries. Understanding the microstructural features of materials is crucial for accurate modeling of their mechanical behavior, particularly with regard to strain- or thermal-induced martensitic phase transformations in ferrous alloys and steels. For example, the formation of BCC α′-martensite can strengthen materials while preserving ductility of the dominating austenitic phase. However, in components where the shape memory effect is attributed to the reversible formation of ε-martensite, the accumulation of deformation-induced α′-martensite is an undesired, irreversible degradation mechanism. This study presents a novel tomographic approach utilizing polarization contrast neutron imaging for the 3D volumetric characterization of magnetic crystallographic phases, especially those present in low phase fractions that are typically undetectable with traditional techniques. The technique is applied to the study of strain-induced martensitic phase transformations in additively manufactured lattice structures made of high-Mn steels, which form small fractions of α′-martensite upon deformation. The results demonstrate the value of this technique for characterizing entire components and complex geometries found in numerous technological applications

    Trail pheromone identification in the ant Crematogaster scutellaris

    No full text
    Abstract In this work, we identified the trail pheromone of the ant Crematogaster scutellaris. We combined gas chromatography–mass spectrometry analysis of extracts from the hind tibia, the location of the respective glands, with automated trail following assays. The study found tridecan-2-ol to be the strongest discriminator between hind tibia and other body part extracts. Tridecan-2-ol elicited trail-following behaviour at concentrations of 1 ng/µL. A separation of the enantiomers showed responses to (R)-tridecan-2-ol already at 0.001 ng/µL and only at a 1000-fold higher concentration for (S)-tridecan-2-ol, suggesting that only the R enantiomer is used by C. scutellaris in its natural environment. We also found strong behavioural responses to 2-dodecanol, a substance that was not detectable in the hind tibia extract of C. scutellaris, but which has been reported to be the trail pheromone of the related species C. castanea. We discuss the contribution of these results to the 'dissection and reconstruction' of strategies and mechanisms underlying the social organization of ants
    corecore