18,249 research outputs found
Trust in the US-EU fruit and vegetable chain: Do US exporters understand EU importers?
Research on organizational and inter organizational trust has become an important field in management and marketing literature, as it is perceived as a pivotal aspect of business transactions. However, clarifications are still needed on the issue of whom we trust; is the person whom we are trading with trusted, or the organization, or just the product‐quality? Not only has this question not been answered within this field of research, neither have cultural differences have been described to any great extent. Additionally, if the perceived factors important to establish trusting relationships may or may not be the same on the buyers and the sellers side in international business transaction in food chains. The primary objective of this research study therefore is to identify how well US exporters understand the elements of trust that establish strong relationships with EU importers. The Analytical Hierarchy Process was used to evaluate the importance of different trust elements in interviews conducted with US exporters and EU importers of fruits and vegetables. Results are compared, providing both a picture of the important facets of trust, as well as whether the partners understand the perspectives of the other partner
Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field
We examine the motion in Schwarzschild spacetime of a point particle endowed
with a scalar charge. The particle produces a retarded scalar field which
interacts with the particle and influences its motion via the action of a
self-force. We exploit the spherical symmetry of the Schwarzschild spacetime
and decompose the scalar field in spherical-harmonic modes. Although each mode
is bounded at the position of the particle, a mode-sum evaluation of the
self-force requires regularization because the sum does not converge: the
retarded field is infinite at the position of the particle. The regularization
procedure involves the computation of regularization parameters, which are
obtained from a mode decomposition of the Detweiler-Whiting singular field;
these are subtracted from the modes of the retarded field, and the result is a
mode-sum that converges to the actual self-force. We present such a computation
in this paper. There are two main aspects of our work that are new. First, we
define the regularization parameters as scalar quantities by referring them to
a tetrad decomposition of the singular field. Second, we calculate four sets of
regularization parameters (denoted schematically by A, B, C, and D) instead of
the usual three (A, B, and C). As proof of principle that our methods are
reliable, we calculate the self-force acting on a scalar charge in circular
motion around a Schwarzschild black hole, and compare our answers with those
recorded in the literature.Comment: 38 pages, 2 figure
Interplay of size and Landau quantizations in the de Haas-van Alphen oscillations of metallic nanowires
We examine the interplay between size quantization and Landau quantization in
the De Haas-Van Alphen oscillations of clean, metallic nanowires in a
longitudinal magnetic field for `hard' boundary conditions, i.e. those of an
infinite round well, as opposed to the `soft' parabolically confined boundary
conditions previously treated in Alexandrov and Kabanov (Phys. Rev. Lett. {\bf
95}, 076601 (2005) (AK)). We find that there exist {\em two} fundamental
frequencies as opposed to the one found in bulk systems and the three
frequencies found by AK with soft boundary counditions. In addition, we find
that the additional `magic resonances' of AK may be also observed in the
infinite well case, though they are now damped. We also compare the numerically
generated energy spectrum of the infinite well potential with that of our
analytic approximation, and compare calculations of the oscillatory portions of
the thermodynamic quantities for both models.Comment: Title changed, paper streamlined on suggestion of referrees, typos
corrected, numerical error in figs 2 and 3 corrected and final result
simplified -- two not three frequencies (as in the previous version) are
observed. Abstract altered accordingly. Submitted to Physical Review
Nuclear alpha-clustering, superdeformation, and molecular resonances
Nuclear alpha-clustering has been the subject of intense study since the
advent of heavy-ion accelerators. Looking back for more than 40 years we are
able today to see the connection between quasimolecular resonances in heavy-ion
collisions and extremely deformed states in light nuclei. For example
superdeformed bands have been recently discovered in light N=Z nuclei such as
Ar, Ca, Cr, and Ni by -ray spectroscopy.
The search for strongly deformed shapes in N=Z nuclei is also the domain of
charged-particle spectroscopy, and our experimental group at IReS Strasbourg
has studied a number of these nuclei with the charged particle multidetector
array {\sc Icare} at the {\sc Vivitron} Tandem facility in a systematical
manner. Recently the search for -decays in Mg has been
undertaken in a range of excitation energies where previously nuclear molecular
resonances were found in C+C collisions. The breakup reaction
MgC has been investigated at E(Mg) = 130 MeV, an
energy which corresponds to the appropriate excitation energy in Mg for
which the C+C resonance could be related to the breakup
resonance. Very exclusive data were collected with the Binary Reaction
Spectrometer in coincidence with {\sc Euroball IV} installed at the {\sc
Vivitron}.Comment: 10 pages, 4 eps figures included. Invited Talk 10th Nuclear Physics
Workshop Marie and Pierre Curie, Kazimierz Dolny Poland, Sep. 24-28, 2003; To
be published in International Journal of Modern Physics
Chiral density waves in quark matter within the Nambu--Jona-Lasinio model in an external magnetic field
A possibility of formation of static dual scalar and pseudoscalar density
wave condensates in dense quark matter is considered for the
Nambu--Jona-Lasinio model in an external magnetic field. Within a mean-field
approximation, the effective potential of the theory is obtained and its minima
are numerically studied; a phase diagram of the system is constructed. It is
shown that the presence of a magnetic field favors the formation of spatially
inhomogeneous condensate configurations at low temperatures and arbitrary
non-zero values of the chemical potential.Comment: 13 pages, 4 figure
On the equivalence principle and gravitational and inertial mass relation of classical charged particles
We show that the locally constant force necessary to get a stable hyperbolic
motion regime for classical charged point particles, actually, is a combination
of an applied external force and of the electromagnetic radiation reaction
force. It implies, as the strong Equivalence Principle is valid, that the
passive gravitational mass of a charged point particle should be slight greater
than its inertial mass. An interesting new feature that emerges from the
unexpected behavior of the gravitational and inertial mass relation, for
classical charged particles, at very strong gravitational field, is the
existence of a critical, particle dependent, gravitational field value that
signs the validity domain of the strong Equivalence Principle. For electron and
proton, these critical field values are
and , respectively
- …