17,053 research outputs found

    Broad-line region structure and kinematics in the radio galaxy 3C 120

    Full text link
    Broad emission lines originate in the surroundings of supermassive black holes in the centers of active galactic nuclei (AGN). One method to investigate the extent, structure, and kinematics of the BLR is to study the continuum and line profile variability in AGN. We selected the radio-loud Seyfert 1 galaxy 3C 120 as a target for this study. We took spectra with a high signal-to-noise ratio of 3C 120 with the 9.2m Hobby-Eberly Telescope between Sept. 2008 and March 2009. In parallel, we photometrically monitored the continuum flux at the Wise observatory. We analyzed the continuum and line profile variations in detail (1D and 2D reverberation mapping) and modeled the geometry of the line-emitting regions based on the line profiles. We show that the BLR in 3C 120 is stratified with respect to the distance of the line-emitting regions from the center with respect to the line widths (FWHM) of the rms profiles and with respect to the variability amplitude of the emission lines. The emission line wings of H{\alpha} and H{\beta} respond much faster than their central region. This is explained by accretion disk models. In addition, these lines show a stronger response in the red wings. However, the velocity-delay maps of the helium lines show a stronger response in the blue wing. Furthermore, the HeII{\lambda}4686 line responds faster in the blue wing in contradiction to observations made one and a half years later when the galaxy was in a lower state. The faster response in the blue wing is an indication for central outflow motions when this galaxy was in a bright state during our observations. The vertical BLR structure in 3C 120 coincides with that of other AGN. We confirm the general trend: the emission lines of narrow line AGN originate at larger distances from the midplane than AGN with broader emission lines.Comment: 18 pages, 25 figures, Astronomy & Astrophysics in pres

    Elastic α\alpha-transfer in the elastic scattering of 16^{\bf 16}O+12+^{\bf 12}C

    Full text link
    The elastic scattering 16^{16}O+12+^{12}C angular distributions at 16^{16}O bombarding energies of 100.0, 115.9 and 124.0 MeV and their optical model description including the α\alpha-particle exchange contribution calculated in the Coupled Reaction Channel approach are presented. The angular distributions show not only the usual diffraction pattern but also, at larger angles, intermediate structure of refractive origin on which finer oscillations are superimposed. The large angle features can be consistently described including explicitly the elastic α\alpha-transfer process and using a refractive optical potential with a deep real part and a weakly absorptive imaginary part.Comment: 3 pages, 2 figures, accepted in Eur.Phys.J A (Short note

    Entanglement, fidelity and topological entropy in a quantum phase transition to topological order

    Full text link
    We present a numerical study of a quantum phase transition from a spin-polarized to a topologically ordered phase in a system of spin-1/2 particles on a torus. We demonstrate that this non-symmetry-breaking topological quantum phase transition (TOQPT) is of second order. The transition is analyzed via the ground state energy and fidelity, block entanglement, Wilson loops, and the recently proposed topological entropy. Only the topological entropy distinguishes the TOQPT from a standard QPT, and remarkably, does so already for small system sizes. Thus the topological entropy serves as a proper order parameter. We demonstrate that our conclusions are robust under the addition of random perturbations, not only in the topological phase, but also in the spin polarized phase and even at the critical point.Comment: replaced with published versio

    Modelling of epitaxial graphene functionalization

    Full text link
    A new model for graphene, epitaxially grown on silicon carbide is proposed. Density functional theory modelling of epitaxial graphene functionalization by hydrogen, fluorine and phenyl groups has been performed with hydrogen and fluorine showing a high probability of cluster formation in high adatom concentration. It has also been shown that the clusterization of fluorine adatoms provides midgap states in formation due to significant flat distortion of graphene. The functionalization of epitaxial graphene using larger species (methyl and phenyl groups) renders cluster formation impossible, due to the steric effect and results in uniform coverage with the energy gap opening.Comment: 15 pages, 4 figures, to appear in Nanotechnolog

    Depolarisation cooling of an atomic cloud

    Full text link
    We propose a cooling scheme based on depolarisation of a polarised cloud of trapped atoms. Similar to adiabatic demagnetisation, we suggest to use the coupling between the internal spin reservoir of the cloud and the external kinetic reservoir via dipolar relaxation to reduce the temperature of the cloud. By optical pumping one can cool the spin reservoir and force the cooling process. In case of a trapped gas of dipolar chromium atoms, we show that this cooling technique can be performed continuously and used to approach the critical phase space density for BECComment: 8 pages, 5 figure

    Generalized Hamiltonian structures for Ermakov systems

    Full text link
    We construct Poisson structures for Ermakov systems, using the Ermakov invariant as the Hamiltonian. Two classes of Poisson structures are obtained, one of them degenerate, in which case we derive the Casimir functions. In some situations, the existence of Casimir functions can give rise to superintegrable Ermakov systems. Finally, we characterize the cases where linearization of the equations of motion is possible

    Frobenius theorem and invariants for Hamiltonian systems

    Full text link
    We apply Frobenius integrability theorem in the search of invariants for one-dimensional Hamiltonian systems with a time-dependent potential. We obtain several classes of potential functions for which Frobenius theorem assures the existence of a two-dimensional foliation to which the motion is constrained. In particular, we derive a new infinite class of potentials for which the motion is assurately restricted to a two-dimensional foliation. In some cases, Frobenius theorem allows the explicit construction of an associated invariant. It is proven the inverse result that, if an invariant is known, then it always can be furnished by Frobenius theorem

    The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas

    Get PDF
    This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism

    Interplay of size and Landau quantizations in the de Haas-van Alphen oscillations of metallic nanowires

    Get PDF
    We examine the interplay between size quantization and Landau quantization in the De Haas-Van Alphen oscillations of clean, metallic nanowires in a longitudinal magnetic field for `hard' boundary conditions, i.e. those of an infinite round well, as opposed to the `soft' parabolically confined boundary conditions previously treated in Alexandrov and Kabanov (Phys. Rev. Lett. {\bf 95}, 076601 (2005) (AK)). We find that there exist {\em two} fundamental frequencies as opposed to the one found in bulk systems and the three frequencies found by AK with soft boundary counditions. In addition, we find that the additional `magic resonances' of AK may be also observed in the infinite well case, though they are now damped. We also compare the numerically generated energy spectrum of the infinite well potential with that of our analytic approximation, and compare calculations of the oscillatory portions of the thermodynamic quantities for both models.Comment: Title changed, paper streamlined on suggestion of referrees, typos corrected, numerical error in figs 2 and 3 corrected and final result simplified -- two not three frequencies (as in the previous version) are observed. Abstract altered accordingly. Submitted to Physical Review
    • 

    corecore