25,048 research outputs found
Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
The interaction of a plane weak shock wave with a single discrete gaseous inhomogeneity is studied as a model of the mechanisms by which finite-amplitude waves in random media generate turbulence and intensify mixing. The experiments are treated as an example of the shock-induced Rayleigh-Taylor instability. or Richtmyer-Meshkov instability, with large initial distortions of the gas interfaces. The inhomogeneities are made by filling large soap bubbles and cylindrical refraction cells (5 cm diameter) whose walls are thin plastic membranes with gases both lighter and heavier than the ambient air in a square (8.9 cm side shock-tube text section. The wavefront geometry and the deformation of the gas volume are visualized by shadowgraph photography. Wave configurations predicted by geometrical acoustics, including the effects of refraction, reflection and diffraction, are compared to the observations. Departures from the predictions of acoustic theory are discussed in terms of gasdynamic nonlinearity. The pressure field on the axis of symmetry downstream of the inhomogeneity is measured by piezoelectric pressure transducers. In the case of a cylindrical or spherical volume filled with heavy low-sound-speed gas the wave which passes through the interior focuses just behind the cylinder. On the other hand, the wave which passes through the light high-sound-speed volume strongly diverges. Visualization of the wavefronts reflected from and diffracted around the inhomogeneities exhibit many features known in optical and acoustic scattering. Rayleigh-Taylor instability induced by shock acceleration deforms the initially circular cross-section of the volume. In the case of the high-sound-speed sphere, a strong vortex ring forms and separates from the main volume of gas. Measurements of the wave and gas-interface velocities are compared to values calculated for one-dimensional interactions and for a simple model of shock-induced Rayleigh-Taylor instability. The circulation and Reynolds number of the vortical structures are calculated from the measured velocities by modeling a piston vortex generator. The results of the flow visualization are also compared with contemporary numerical simulations
The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas
This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism
Fidelity and superconductivity in two-dimensional t-J models
We compute the ground-state fidelity and various correlations to gauge the
competition between different orders in two-dimensional t-J-type models. Using
exact numerical diagonalization techniques, these quantities are examined for
(i) the plain t-J and t-t'-J models, (ii) for the t-J model perturbed by
infinite-range d-wave or extended-s-wave superconductivity inducing terms, and
(iii) the t-J model, plain and with a d-wave perturbation, in the presence of
non-magnetic quenched disorder. Various properties at low hole doping are
contrasted with those at low electron filling. In the clean case, our results
are consistent with previous work that concluded that the plain t-J model
supports d-wave superconductivity. As a consequence of the strong correlations
present in the low hole doping regime, we find that the magnitude of the d-wave
condensate occupation is small even in the presence of large d-wave
superconductivity inducing terms. In the dirty case, we show the robustness of
the ground state in the strongly correlated regime against disorder.Comment: 11 pages, 12 figures, as publishe
Potential income gains for rural households in North Eastern Thailand through trade with organic products
The study groups households in North Eastern Thailand according their income and grade of specialisation in crop production to derive representative household types. For these household types a linear optimization model is run to calculate net incomes under four scenarios. These are certified organic farming, organic farming in the initial and transitional phase and a self-sufficient farming. Simulations for the different management scenarios show that per ha cash profits are about double under certification while they can only be increased by 30 percent under self-sufficient farming, even under favourable assumptions. But transition costs to organic farming are high due to reduced yields at the beginning. According to the figures and model used, only under certified organic production it pays to hire non household workers. Labour hence is a major limiting factor.organic agriculture, Thailand, household income, Consumer/Household Economics, International Relations/Trade,
Relativistic Klein-Gordon-Maxwell multistream model for quantum plasmas
A multistream model for spinless electrons in a relativistic quantum plasma
is introduced by means of a suitable fluid-like version of the
Klein-Gordon-Maxwell system. The one and two-stream cases are treated in
detail. A new linear instability condition for two-stream quantum plasmas is
obtained, generalizing the previously known non-relativistic results. In both
the one and two-stream cases, steady-state solutions reduce the model to a set
of coupled nonlinear ordinary differential equations, which can be numerically
solved, yielding a manifold of nonlinear periodic and soliton structures. The
validity conditions for the applicability of the model are addressed
A Decision-Theoretic Approach to Resource Allocation in Wireless Multimedia Networks
The allocation of scarce spectral resources to support as many user
applications as possible while maintaining reasonable quality of service is a
fundamental problem in wireless communication. We argue that the problem is
best formulated in terms of decision theory. We propose a scheme that takes
decision-theoretic concerns (like preferences) into account and discuss the
difficulties and subtleties involved in applying standard techniques from the
theory of Markov Decision Processes (MDPs) in constructing an algorithm that is
decision-theoretically optimal. As an example of the proposed framework, we
construct such an algorithm under some simplifying assumptions. Additionally,
we present analysis and simulation results that show that our algorithm meets
its design goals. Finally, we investigate how far from optimal one well-known
heuristic is. The main contribution of our results is in providing insight and
guidance for the design of near-optimal admission-control policies.Comment: To appear, Dial M for Mobility, 200
Rheological Behavior of a Dispersion of Small Lipid Bilayer Vesicles
Rheological behavior of a dispersion of small nearly-unilamellar phospholipid bilayer vesicles has been investigated. We conducted steady-state shear experiments and linear viscoelastic experiments. In the dilute and semidilute regime the rheological behavior is similar to that of a hard-sphere dispersion as reported in the literature for viscoelastic measurements, but now also observed in steady shear experiments. The effect of the main acyl-chain phase transition, taking place at 23 °C, can be described with an increase of the effective volume fraction. As a result, with temperature variation one can obtain effective volume fractions larger than the maximum packing fraction for hard spheres. Near and above the maximum packing fraction a dynamic yield stress ty and a frequency independent storage modulus G' develop. In this concentration regime the rheological behavior is determined by the interplay between vesicle deformation and the intervesicle interaction, and so far, there is no indication which phenomenon is dominant. A comparison with recently reported measurements suggests that G' is proportional to a-3, where a is the vesicle radius. Furthermore, we show that ty = γcG' which is in agreement with theory. Here tγ is the dynamic yield stress and γc the critical strain which indicates the transition to nonlinear behavior in a viscoelastic experiment. There is a striking resemblance between our high concentration results and those reported in literature for vesicles in the so-called onion phase. To the best of our knowledge this is the first rheological study for concentrated nearly-unilamellar vesicle dispersions with volume fraction and temperature as variables
Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations
The increasing accuracy of automatic chord estimation systems, the
availability of vast amounts of heterogeneous reference annotations, and
insights from annotator subjectivity research make chord label personalization
increasingly important. Nevertheless, automatic chord estimation systems are
historically exclusively trained and evaluated on a single reference
annotation. We introduce a first approach to automatic chord label
personalization by modeling subjectivity through deep learning of a harmonic
interval-based chord label representation. After integrating these
representations from multiple annotators, we can accurately personalize chord
labels for individual annotators from a single model and the annotators' chord
label vocabulary. Furthermore, we show that chord personalization using
multiple reference annotations outperforms using a single reference annotation.Comment: Proceedings of the First International Conference on Deep Learning
and Music, Anchorage, US, May, 2017 (arXiv:1706.08675v1 [cs.NE]
Entanglement Entropy in the Two-Dimensional Random Transverse Field Ising Model
The scaling behavior of the entanglement entropy in the two-dimensional
random transverse field Ising model is studied numerically through the strong
disordered renormalization group method. We find that the leading term of the
entanglement entropy always scales linearly with the block size. However,
besides this \emph{area law} contribution, we find a subleading logarithmic
correction at the quantum critical point. This correction is discussed from the
point of view of an underlying percolation transition, both at finite and at
zero temperature.Comment: 4.3 pages, 4 figure
- âŚ