43 research outputs found

    Opto-Electronic Properties of Fluorene-Based Derivatives as Precursors for Light-Emitting Diodes

    Get PDF
    This paper reports optical absorption spectra of oxidized fluorene copolymers obtained by chemical oxidation with Ce(IV) and by pulse radiolysis experiments in chlorinated solvents. Comparison of the results observed by the two techniques is used to provide spectral data on the copolymer radical ions and information on stability of the oxidized species. In addition, a detailed quantum chemical characterization is presented, concerning the electronic and optical properties of three series of charged oligomers containing alternating fluorene and phenylene or thienylene or benzothiadiazole units, respectively. The introduction of the comonomer strongly influences the optical properties, leading to a red shift in the absorption spectra of the charged oligomers. This shift is more pronounced in the case of fluorene benzothiadiazole anions due to the strong electron-accepting character of the benzothiadiazole moieties. The charge distribution of the fluorene benzothiadiazole anion is different from that corresponding to fluorene phenylene and fluorene thienylene anions. The negative charge of the latter oligomers is evenly distributed over the fluorene units, while the former oligomer localizes the negative charge on the benzothiadiazole units. The charge distribution correlates with the optical absorption spectra. When the positive charge is localized on a different unit than the negative charge, the cation and anion spectra are different. Similar spectra are obtained if both the positive and negative charges are localized on the same unit
    corecore