10 research outputs found

    Glioblastoma hijacks microglial gene expression to support tumor growth

    Get PDF
    Background: Glioblastomas are the most common and lethal primary brain tumors. Microglia, the resident immune cells of the brain, survey their environment and respond to pathogens, toxins, and tumors. Glioblastoma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Despite the presence of large numbers of microglia in glioblastoma, the tumors continue to grow, and these neuroimmune cells appear incapable of keeping the tumor in check. To understand this process, we analyzed gene expression in microglia interacting with glioblastoma cells.Methods: We used RNASeq of isolated microglia to analyze the expression patterns of genes involved in key microglial functions in mice with glioblastoma. We focused on microglia that had taken up tumor-derived EVs and therefore were within and immediately adjacent to the tumor.Results: We show that these microglia have downregulated expression of genes involved in sensing tumor cells and tumor-derived danger signals, as well as genes used for tumor killing. In contrast, expression of genes involved in facilitating tumor spread was upregulated. These changes appear to be in part EV-mediated, since intracranial injection of EVs in normal mice led to similar transcriptional changes in microglia. We observed a similar microglial transcriptomic signature when we analyzed datasets from human patients with glioblastoma.Conclusion: Our data define a microgliaGlioblastoma specific phenotype, whereby glioblastomas have hijacked gene expression in the neuroimmune system to favor avoiding tumor sensing, suppressing the immune response, clearing a path for invasion, and enhancing tumor propagation. For further exploration, we developed an interactive online tool at http://www.glioma-microglia.com with all expression data and additional functional and pathway information for each gene.</p

    Nonlinear Spin Dynamics in Nuclear Magnets

    Full text link
    A method is developed for solving nonlinear systems of differential, or integrodifferential, equations with stochastic fields. The method makes it possible to give an accurate solution for an interesting physical problem: What are the peculiarities of nonlinear spin dynamics in nonequilibrium nuclear magnets coupled with a resonator? Evolution equations for nuclear spins are derived basing on a Hamiltonian with dipole interactions. The ensemble of spins is coupled with a resonator electric circuit. Seven types of main relaxation regimes are found: free induction, collective induction, free relaxation, collective relaxation, weak superradiance, pure superradiance, and triggered superradiance. The initial motion of spins can be originated by two reasons, either by an imposed initial coherence or by local spin fluctuations due to nonsecular dipole interactions. The relaxation regimes caused by the second reason cannot be described by the Bloch equations. Numerical estimates show good agreement with experiment.Comment: 1 file, 47 pages, LaTe

    RNA sensing via the RIG-I-like receptor LGP2 is essential for the induction of a type I IFN response in ADAR1 deficiency

    Get PDF
    RNA editing by the adenosine deaminase ADAR1 prevents innate immune responses to endogenous RNAs. In ADAR1-deficient cells, unedited self RNAs form base-paired structures that resemble viral RNAs and inadvertently activate the cytosolic RIG-I-like receptor (RLR) MDA5, leading to an antiviral type I interferon (IFN) response. Mutations in ADAR1 cause Aicardi-Goutieres Syndrome (AGS), an autoinflammatory syndrome characterized by chronic type I IFN production. Conversely, ADAR1 loss and the consequent type I IFN production restricts tumor growth and potentiates the activity of some chemotherapeutics. Here, we show that another RIG-I-like receptor, LGP2, also has an essential role in the induction of a type I IFN response in ADAR1-deficient human cells. This requires the canonical function of LGP2 as an RNA sensor and facilitator of MDA5-dependent signaling. Furthermore, we show that the sensitivity of tumor cells to ADAR1 loss requires LGP2 expression. Finally, type I IFN induction in tumor cells depleted of ADAR1 and treated with some chemotherapeutics fully depends on LGP2 expression. These findings highlight a central role for LGP2 in self RNA sensing with important clinical implications

    Lipid Based Nanoparticles: Current Strategies for Brain Tumor Targeting

    No full text

    Final customers’ value in business networks

    No full text

    The Mesothelium and Its Reactions: A Review

    No full text

    BIBLIOGRAPHY-BIBLIOGRAPHIE

    No full text
    corecore