1,613 research outputs found
Combined Classifier versus Combined Feature Space in Scale Space Texture Classification
Using combined classifiers alleviates the problem of generating a large feature space, as the features generated from each scale/derivative are directly fed to a base classifier. In this approach, instead of concatenating features generated from each scale/derivative, the decision made by the base classifiers are combined in a two-stage combined classifier.In this paper, the performance of the proposed classification system is first compared against the combined feature space for only the zeroth order Gaussian derivative at multiple scales. The results clearly show that the proposed system using combined classifiers outperforms the classical approach of the combined feature space. The significance of the parameters, especially the fraction of variance maintained after applying PCA (principal component analysis) is also discussed
Spectroscopy on two coupled flux qubits
We have performed spectroscopy measurements on two coupled flux qubits. The
qubits are coupled inductively, which results in a
interaction. By applying microwave radiation, we observe resonances due to
transitions from the ground state to the first two excited states. From the
position of these resonances as a function of the magnetic field applied we
observe the coupling of the qubits. The coupling strength agrees well with
calculations of the mutual inductance
Mapping the Wigner distribution function of the Morse oscillator into a semi-classical distribution function
The mapping of the Wigner distribution function (WDF) for a given bound-state
onto a semiclassical distribution function (SDF) satisfying the Liouville
equation introduced previously by us is applied to the ground state of the
Morse oscillator. Here we give results showing that the SDF gets closer to the
corresponding WDF as the number of levels of the Morse oscillator increases. We
find that for a Morse oscillator with one level only, the agreement between the
WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it
becomes satisfactory.Comment: Revtex, 27 pages including 13 eps figure
Multilinear Wavelets: A Statistical Shape Space for Human Faces
We present a statistical model for D human faces in varying expression,
which decomposes the surface of the face using a wavelet transform, and learns
many localized, decorrelated multilinear models on the resulting coefficients.
Using this model we are able to reconstruct faces from noisy and occluded D
face scans, and facial motion sequences. Accurate reconstruction of face shape
is important for applications such as tele-presence and gaming. The localized
and multi-scale nature of our model allows for recovery of fine-scale detail
while retaining robustness to severe noise and occlusion, and is
computationally efficient and scalable. We validate these properties
experimentally on challenging data in the form of static scans and motion
sequences. We show that in comparison to a global multilinear model, our model
better preserves fine detail and is computationally faster, while in comparison
to a localized PCA model, our model better handles variation in expression, is
faster, and allows us to fix identity parameters for a given subject.Comment: 10 pages, 7 figures; accepted to ECCV 201
Journal of Women in Educational Leadership
1 Miep Gies (1909-2010): Her Legacy Endures- Marilyn L. Grady
3 Gender Differences in Research Mentorship and Pretenured Counselor Educators-
Suzanne Campbell, Kathryn Mueller and Jane M. Souz
Off shell behaviour of the in medium nucleon-nucleon cross section
The properties of nucleon-nucleon scattering inside dense nuclear matter are
investigated. We use the relativistic Brueckner-Hartree-Fock model to determine
on-shell and half off-shell in-medium transition amplitudes and cross sections.
At finite densities the on-shell cross sections are generally suppressed. This
reduction is, however, less pronounced than found in previous works. In the
case that the outgoing momenta are allowed to be off energy shell the
amplitudes show a strong variation with momentum. This description allows to
determine in-medium cross sections beyond the quasi-particle approximation
accounting thereby for the finite width which nucleons acquire in the dense
nuclear medium. For reasonable choices of the in-medium nuclear spectral width,
i.e. MeV, the resulting total cross sections are, however,
reduced by not more than about 25% compared to the on-shell values. Off-shell
effect are generally more pronounced at large nuclear matter densities.Comment: 31 pages Revtex, 12 figures, typos corrected, to appear in Phys. Rev.
Molecular formations in ultracold mixtures of interacting and noninteracting atomic gases
Atom-molecule equilibrium for molecular formation processes is discussed for
boson-fermion, fermion-fermion, and boson-boson mixtures of ultracold atomic
gases in the framework of quasichemical equilibrium theory. After presentation
of the general formulation, zero-temperature phase diagrams of the
atom-molecule equilibrium states are calculated analytically; molecular, mixed,
and dissociated phases are shown to appear for the change of the binding energy
of the molecules. The temperature dependences of the atom or molecule densities
are calculated numerically, and finite-temperature phase structures are
obtained of the atom-molecule equilibrium in the mixtures. The transition
temperatures of the atom or molecule Bose-Einstein condensations are also
evaluated from these results. Quantum-statistical deviations of the law of mass
action in atom-molecule equilibrium, which should be satisfied in mixtures of
classical Maxwell-Boltzmann gases, are calculated, and the difference in the
different types of quantum-statistical effects is clarified. Mean-field
calculations with interparticle interactions (atom-atom, atom-molecule, and
molecule-molecule) are formulated, where interaction effects are found to give
the linear density-dependent term in the effective molecular binding energies.
This method is applied to calculations of zero-temperature phase diagrams,
where new phases with coexisting local-equilibrium states are shown to appear
in the case of strongly repulsive interactions.Comment: 35 pages, 14 figure
Genetic alterations on chromosome 16 and 17 are important features of ductal carcinoma in situ of the breast and are associated with histologic type
We analysed the involvement of known and putative tumour suppressor- and oncogene loci in ductal carcinoma in situ (DCIS) by microsatellite analysis (LOH), Southern blotting and comparative genomic hybridization (CGH). A total of 78 pure DCIS cases, classified histologically as well, intermediately and poorly differentiated, were examined for LOH with 76 markers dispersed along all chromosome arms. LOH on chromosome 17 was more frequent in poorly differentiated DCIS (70%) compared to well-differentiated DCIS (17%), whereas loss on chromosome 16 was associated with well- and intermediately differentiated DCIS (66%). For a subset we have done Southern blot- and CGH analysis. C-erbB2/neu was amplified in 30% of poorly differentiated DCIS. No amplification was found of c-myc, mdm2, bek, flg and the epidermal growth factor (EGF)-receptor. By CGH, most frequent alterations in poorly differentiated DCIS were gains on 8q and 17q22–24 and deletion on 17p, whereas in well-differentiated DCIS amplification on chromosome 1q and deletion on 16q were found. In conclusion, our data indicates that inactivation of a yet unknown tumour suppressor gene on chromosome 16q is implicated in the development of most well and intermediately differentiated DCIS whereas amplification and inactivation of various genes on chromosome 17 are implicated in the development of poorly differentiated DCIS. Furthermore these data show that there is a genetic basis for the classification of DCIS in a well and poorly differentiated type and support the evidence of different genetic routes to develop a specific type of carcinoma in situ of the breast. © 1999 Cancer Research Campaig
Wavelets: mathematics and applications
The notion of wavelets is defined. It is briefly described {\it what} are
wavelets, {\it how} to use them, {\it when} we do need them, {\it why} they are
preferred and {\it where} they have been applied. Then one proceeds to the
multiresolution analysis and fast wavelet transform as a standard procedure for
dealing with discrete wavelets. It is shown which specific features of signals
(functions) can be revealed by this analysis, but can not be found by other
methods (e.g., by the Fourier expansion). Finally, some examples of practical
application are given (in particular, to analysis of multiparticle production}.
Rigorous proofs of mathematical statements are omitted, and the reader is
referred to the corresponding literature.Comment: 16 pages, 5 figures, Latex, Phys. Atom. Nuc
Critical Enhancement of the In-medium Nucleon-Nucleon Cross Section at low Temperatures
The in-medium nucleon-nucleon cross section is calculated starting from the
thermodynamic T-matrix at finite temperatures. The corresponding
Bethe-Salpeter-equation is solved using a separable representation of the Paris
nucleon-nucleon-potential. The energy-dependent in-medium N-N cross section at
a given density shows a strong temperature dependence. Especially at low
temperatures and low total momenta, the in-medium cross section is strongly
modified by in-medium effects. In particular, with decreasing temperature an
enhancement near the Fermi energy is observed. This enhancement can be
discussed as a precursor of the superfluid phase transition in nuclear matter.Comment: 10 pages with 4 figures (available on request from the authors),
MPG-VT-UR 34/94 accepted for publication in Phys. Rev.
- …