15,119 research outputs found

    Exact solution of DND_N type quantum Calogero model through a mapping to free harmonic oscillators

    Full text link
    We solve the eigenvalue problem of the DND_N type of Calogero model by mapping it to a set of decoupled quantum harmonic oscillators through a similarity transformation. In particular, we construct the eigenfunctions of this Calogero model from those of bosonic harmonic oscillators having either all even parity or all odd parity. It turns out that the eigenfunctions of this model are orthogonal with respect to a nontrivial inner product, which can be derived from the quasi-Hermiticity property of the corresponding conserved quantities.Comment: 16 page

    Electron Addition Spectrum in the Supersymmetric t-J Model with Inverse-Square Interaction

    Full text link
    The electron addition spectrum A^+(k,omega) is obtained analytically for the one-dimensional (1D) supersymmetric t-J model with 1/r^2 interaction. The result is obtained first for a small-sized system and its validity is checked against the numerical calculation. Then the general expression is found which is valid for arbitrary size of the system. The thermodynamic limit of A^+(k,omega) has a simple analytic form with contributions from one spinon, one holon and one antiholon all of which obey fractional statistics. The upper edge of A^+(k,omega) in the (k,omega) plane includes a delta-function peak which reduces to that of the single-electron band in the low-density limit.Comment: 5 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Green Function of the Sutherland Model with SU(2) internal symmetry

    Full text link
    We obtain the hole propagator of the Sutherland model with SU(2) internal symmetry for coupling parameter β=1\beta=1, which is the simplest nontrivial case. One created hole with spin down breaks into two quasiholes with spin down and one quasihole with spin up. While these elementary excitations are energetically free, the form factor reflects their anyonic character. The expression for arbitrary integer β\beta is conjectured.Comment: 13pages, Revtex, one ps figur

    Spin-Charge Separation at Finite Temperature in the Supersymmetric t-J Model with Long-Range Interactions

    Full text link
    Thermodynamics is derived rigorously for the 1D supersymmetric {\it t-J} model and its SU(K,1K,1) generalization with inverse-square exchange. The system at low temperature is described in terms of spinons, antispinons, holons and antiholons obeying fractional statistics. They are all free and make the spin susceptibility independent of electron density, and the charge susceptibility independent of magnetization. Thermal spin excitations responsible for the entropy of the SU(K,1K,1) model are ascribed to free para-fermions of order K−1K-1.Comment: 10 pages, REVTE

    Combinatorial interpretation of Haldane-Wu fractional exclusion statistics

    Full text link
    Assuming that the maximal allowed number of identical particles in state is an integer parameter, q, we derive the statistical weight and analyze the associated equation which defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases q = 1 and q -> infinity (n_i/q -> 1), respectively. We show that the derived statistical weight provides a natural combinatorial interpretation of Haldane-Wu fractional exclusion statistics, and present exact solutions of the distribution equation.Comment: 8 pages, 2 eps-figure

    Exact dynamical structure factor of the degenerate Haldane-Shastry model

    Full text link
    The dynamical structure factor S(q,ω)S(q,\omega) of the K-component (K = 2,3,4) spin chain with the 1/r^2 exchange is derived exactly at zero temperature for arbitrary size of the system. The result is interpreted in terms of a free quasi-particle picture which is generalization of the spinon picture in the SU(2) case; the excited states consist of K quasi-particles each of which is characterized by a set of K-1 quantum numbers. Divergent singularities of S(q,ω)S(q,\omega) at the spectral edges are derived analytically. The analytic result is checked numerically for finite systems.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Exactly Solvable Pairing Model Using an Extension of Richardson-Gaudin Approach

    Full text link
    We introduce a new class of exactly solvable boson pairing models using the technique of Richardson and Gaudin. Analytical expressions for all energy eigenvalues and first few energy eigenstates are given. In addition, another solution to Gaudin's equation is also mentioned. A relation with the Calogero-Sutherland model is suggested.Comment: 9 pages of Latex. In the proceedings of Blueprints for the Nucleus: From First Principles to Collective Motion: A Festschrift in Honor of Professor Bruce Barrett, Istanbul, Turkey, 17-23 May 200
    • …
    corecore